GudB

From SubtiWiki
Revision as of 13:01, 21 July 2015 by Raphael2215 (talk | contribs) (Biological materials)
Jump to: navigation, search
  • Description: trigger enzyme: glutamate dehydrogenase (cryptic in 168 and derivatives)

Gene name gudB
Synonyms ypcA
Essential no
Product trigger enzyme: glutamate dehydrogenase
Function glutamate utilization, control of GltC activity
Gene expression levels in SubtiExpress: gudB
Interactions involving this protein in SubtInteract: GudB
Metabolic function and regulation of this protein in SubtiPathways:
gudB
MW, pI 47 kDa, 5.582
Gene length, protein length 1278 bp, 426 aa
Immediate neighbours ypdA, ypbH
Sequences Protein DNA DNA_with_flanks
Genetic context
GudB context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
GudB expression.png















Categories containing this gene/protein

utilization of amino acids, glutamate metabolism, transcription factors and their control, trigger enzyme, phosphoproteins

This gene is a member of the following regulons

The gene

Basic information

  • Locus tag: BSU22960

Expression

Phenotypes of a mutant

  • The gene is cryptic. If gudB is activated (gudB1 mutation), the bacteria are able to utilize glutamate as the only carbon source. PubMed
  • A rocG gudB mutant is sensitive to ß-lactam antibiotics such as cefuroxime and to fosfomycin due to the downregulation of the SigW regulon PubMed
  • transcription profile of a rocG gudB mutant strain: GEO PubMed

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: L-glutamate + H2O + NAD+ = 2-oxoglutarate + NH3 + NADH + H+ (according to Swiss-Prot)
  • Protein family: Glu/Leu/Phe/Val dehydrogenases family (according to Swiss-Prot)
  • Paralogous protein(s): RocG

Extended information on the protein

  • Kinetic information:
  • Modification:
    • phosphorylated on Arg-56, Arg-83, and Arg-421 and/or Arg-423 PubMed
  • Effectors of protein activity:

Database entries

  • Structure: 3K8Z (enzymatically active GudB1) PubMed
  • KEGG entry: [4]

Additional information

Expression and regulation

  • Regulation: constitutively expressed PubMed
  • Regulatory mechanism:
  • Additional information: GudB is subject to Clp-dependent proteolysis upon glucose starvation PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium): 239 PubMed
    • number of protein molecules per cell (complex medium with amino acids, without glucose): 6565 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, exponential phase): 1157 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, early stationary phase after glucose exhaustion): 580 PubMed
    • number of protein molecules per cell (minimal medium with glucose and ammonium, late stationary phase after glucose exhaustion): 888 PubMed

Biological materials

  • Mutant: GP691 (ΔgudB::cat), GP1160 (ΔgudB::aphA3) both available in Jörg Stülke's lab
  • Mutant: BP442 (ΔgudB::aphA3), lacking the complete promoter, available in Fabian Commichau's lab
  • Expression vector:
    • for purification of GudB from E. coli carrying an N-terminal Strep-tag: pGP863 (in pGP172) available in Jörg Stülke's lab
    • for purification of GudB1 from E. coli carrying an N-terminal Strep-tag: pGP864 (in pGP172) available in Jörg Stülke's lab
    • for ectopic expression of gudB with its native promoter: pGP900 (in pAC5), available in Jörg Stülke's lab
    • wild type gudB, expression in B. subtilis, in pBQ200: pGP1712, available in Jörg Stülke's lab
  • lacZ fusion: pGP651 (in pAC5), available in Jörg Stülke's lab
  • GFP fusion:
  • two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH) PubMed, available in Fabian Commichau's lab
  • two-hybrid system: (gudB+) B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH) PubMed, available in Fabian Commichau's lab


Labs working on this gene/protein

Your additional remarks

The GudB protein is active in other legacy B. subtilis strains (e.g. strain 122). Thus, it can be speculated that the ancestral gudB gene was not cryptic, but became so as a product of the "domestication" of B. subtilis 168 in the lab. PubMed

References

Reviews


Original publications