TagF

From SubtiWiki
Revision as of 16:37, 7 August 2012 by 134.76.70.252 (talk)
Jump to: navigation, search
  • Description: CDP-glycerol:polyglycerol phosphate glycero-phosphotransferase

Gene name tagF
Synonyms rodC
Essential yes PubMed
Product CDP-glycerol:polyglycerol phosphate glycero-phosphotransferase
Function biosynthesis of teichoic acid
Gene expression levels in SubtiExpress: tagF
MW, pI 87 kDa, 9.4
Gene length, protein length 2238 bp, 746 aa
Immediate neighbours tagG, tagE
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
TagF context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
TagF expression.png
























Categories containing this gene/protein

cell wall synthesis, biosynthesis of cell wall components, essential genes, membrane proteins

This gene is a member of the following regulons

PhoP regulon, WalR regulon

The gene

Basic information

  • Locus tag: BSU35720

Phenotypes of a mutant

essential PubMed

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: CDP-glycerol + (glycerophosphate)(n) = CMP + (glycerophosphate)(n+1) (according to Swiss-Prot)
  • Protein family: CDP-glycerol glycerophosphotransferase family (according to Swiss-Prot)
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:

Database entries

  • Structure:
  • KEGG entry: [3]

Additional information

Expression and regulation

  • Additional information:

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Edward W C Sewell, Mark P Pereira, Eric D Brown
The wall teichoic acid polymerase TagF is non-processive in vitro and amenable to study using steady state kinetic analysis.
J Biol Chem: 2009, 284(32);21132-8
[PubMed:19520862] [WorldCat.org] [DOI] (P p)

Hannes Hahne, Susanne Wolff, Michael Hecker, Dörte Becher
From complementarity to comprehensiveness--targeting the membrane proteome of growing Bacillus subtilis by divergent approaches.
Proteomics: 2008, 8(19);4123-36
[PubMed:18763711] [WorldCat.org] [DOI] (I p)

Alex Formstone, Rut Carballido-López, Philippe Noirot, Jeffery Errington, Dirk-Jan Scheffers
Localization and interactions of teichoic acid synthetic enzymes in Bacillus subtilis.
J Bacteriol: 2008, 190(5);1812-21
[PubMed:18156271] [WorldCat.org] [DOI] (I p)

Jeffrey W Schertzer, Amit P Bhavsar, Eric D Brown
Two conserved histidine residues are critical to the function of the TagF-like family of enzymes.
J Biol Chem: 2005, 280(44);36683-90
[PubMed:16141206] [WorldCat.org] [DOI] (P p)

Amit P Bhavsar, Laura K Erdman, Jeffrey W Schertzer, Eric D Brown
Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid.
J Bacteriol: 2004, 186(23);7865-73
[PubMed:15547257] [WorldCat.org] [DOI] (P p)

Alistair Howell, Sarah Dubrac, Kasper Krogh Andersen, David Noone, Juliette Fert, Tarek Msadek, Kevin Devine
Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach.
Mol Microbiol: 2003, 49(6);1639-55
[PubMed:12950927] [WorldCat.org] [DOI] (P p)

Jeffrey W Schertzer, Eric D Brown
Purified, recombinant TagF protein from Bacillus subtilis 168 catalyzes the polymerization of glycerol phosphate onto a membrane acceptor in vitro.
J Biol Chem: 2003, 278(20);18002-7
[PubMed:12637499] [WorldCat.org] [DOI] (P p)

W Liu, S Eder, F M Hulett
Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P.
J Bacteriol: 1998, 180(3);753-8
[PubMed:9457886] [WorldCat.org] [DOI] (P p)

C Mauël, A Bauduret, C Chervet, S Beggah, D Karamata
In Bacillus subtilis 168, teichoic acid of the cross-wall may be different from that of the cylinder: a hypothesis based on transcription analysis of tag genes.
Microbiology (Reading): 1995, 141 ( Pt 10);2379-89
[PubMed:7581998] [WorldCat.org] [DOI] (P p)

P M Wagner, G C Stewart
Role and expression of the Bacillus subtilis rodC operon.
J Bacteriol: 1991, 173(14);4341-6
[PubMed:1712357] [WorldCat.org] [DOI] (P p)

A L Honeyman, G C Stewart
The nucleotide sequence of the rodC operon of Bacillus subtilis.
Mol Microbiol: 1989, 3(9);1257-68
[PubMed:2507871] [WorldCat.org] [DOI] (P p)