RpoE

From SubtiWiki
Revision as of 15:25, 2 April 2013 by Jstuelk (talk | contribs)
Jump to: navigation, search
  • Description: RNA polymerase delta subunit, affects the regulation of RNA polymerase by the concentration of the initiating nucleoside triphosphate ([iNTP])

Gene name rpoE
Synonyms
Essential no
Product RNA polymerase delta subunit
Function transcription
Gene expression levels in SubtiExpress: rpoE
Interactions involving this protein in SubtInteract: RpoE
Metabolic function and regulation of this protein in SubtiPathways:
Fatty acid degradation
MW, pI 20 kDa, 3.654
Gene length, protein length 519 bp, 173 aa
Immediate neighbours pyrG, acdA
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
RpoE context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
RpoE expression.png















Categories containing this gene/protein

transcription

This gene is a member of the following regulons

FadR regulon

The gene

Basic information

  • Locus tag: BSU37160

Phenotypes of a mutant

  • RpoE is essential for cell survival when facing a competing strain in changing environment PubMed

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
  • Protein family: rpoE family (according to Swiss-Prot)
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:

Database entries

  • KEGG entry: [3]

Additional information

Expression and regulation

  • Regulation:
    • fadF: repressed in the absence of long-chain fatty acids (FadR) PubMed
  • Regulatory mechanism:

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Arthur Aronson, Purdue University, West Lafayette, USA homepage

Your additional remarks

References

Reviews

Lakshminarayan M Iyer, L Aravind
Insights from the architecture of the bacterial transcription apparatus.
J Struct Biol: 2012, 179(3);299-319
[PubMed:22210308] [WorldCat.org] [DOI] (I p)

Original publications