AlsD

From SubtiWiki
Revision as of 14:51, 30 November 2010 by Lflorez (talk | contribs)
Jump to: navigation, search
  • Description: acetolactate decarboxylase

Gene name alsD
Synonyms
Essential no
Product acetolactate decarboxylase)
Function overflow metabolism
Metabolic function and regulation of this protein in SubtiPathways:
Central C-metabolism
MW, pI 28 kDa, 4.603
Gene length, protein length 765 bp, 255 aa
Immediate neighbours ywrO, alsS
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
AlsD context.gif
This image was kindly provided by SubtiList







The gene

Basic information

  • Locus tag: BSU36000

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

Categories containing this gene/protein

carbon core metabolism, phosphoproteins

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: (2S)-2-hydroxy-2-methyl-3-oxobutanoate = (3R)-3-hydroxybutan-2-one + CO2 (according to Swiss-Prot)
  • Protein family: alpha-acetolactate decarboxylase family (according to Swiss-Prot)
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification: phosphorylated on ser/ thr/ tyr PubMed, in vitro phosphorylated by PrkC on Ser-88 PubMed
  • Cofactor(s):
  • Effectors of protein activity:
  • Interactions:
  • Localization:

Database entries

  • Structure:
  • KEGG entry: [3]

Additional information

Expression and regulation

  • Regulation:
    • induction by acetate (AlsR) PubMed
    • repressed as long as terminal electron acceptors are available for respiration (Rex) PubMed
    • subject to positive stringent control upon lysine starvation PubMed

Note: since acetate formation requires ackA activation by CcpA there is an indirect effect of CcpA on the alsSD operon: the operon is not expressed in ccpA mutants

  • Regulatory mechanism:
    • stringent response: due to presence of adenines at +1 and +2 positions of the transcript PubMed
    • AlsR: transcription activation in the presence of acetate PubMed
    • Rex: transcription repression if the ratio NADH2/NAD is high PubMed


  • Additional information:

Biological materials

  • Mutant:
  • Expression vector:
    • for expression, purification in E. coli with N-terminal Strep-tag, in pGP172: pGP822, available in Stülke lab
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Your additional remarks

References

Nico Pietack, Dörte Becher, Sebastian R Schmidl, Milton H Saier, Michael Hecker, Fabian M Commichau, Jörg Stülke
In vitro phosphorylation of key metabolic enzymes from Bacillus subtilis: PrkC phosphorylates enzymes from different branches of basic metabolism.
J Mol Microbiol Biotechnol: 2010, 18(3);129-40
[PubMed:20389117] [WorldCat.org] [DOI] (I p)

Shigeo Tojo, Kanako Kumamoto, Kazutake Hirooka, Yasutaro Fujita
Heavy involvement of stringent transcription control depending on the adenine or guanine species of the transcription initiation site in glucose and pyruvate metabolism in Bacillus subtilis.
J Bacteriol: 2010, 192(6);1573-85
[PubMed:20081037] [WorldCat.org] [DOI] (I p)

Takashi Inaoka, Takenori Satomura, Yasutaro Fujita, Kozo Ochi
Novel gene regulation mediated by overproduction of secondary metabolite neotrehalosadiamine in Bacillus subtilis.
FEMS Microbiol Lett: 2009, 291(2);151-6
[PubMed:19087206] [WorldCat.org] [DOI] (I p)

Alain Lévine, Françoise Vannier, Cédric Absalon, Lauriane Kuhn, Peter Jackson, Elaine Scrivener, Valérie Labas, Joëlle Vinh, Patrick Courtney, Jérôme Garin, Simone J Séror
Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes.
Proteomics: 2006, 6(7);2157-73
[PubMed:16493705] [WorldCat.org] [DOI] (P p)

Heike Reents, Richard Münch, Thorben Dammeyer, Dieter Jahn, Elisabeth Härtig
The Fnr regulon of Bacillus subtilis.
J Bacteriol: 2006, 188(3);1103-12
[PubMed:16428414] [WorldCat.org] [DOI] (P p)

A J Turinsky, T R Moir-Blais, F J Grundy, T M Henkin
Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis.
J Bacteriol: 2000, 182(19);5611-4
[PubMed:10986270] [WorldCat.org] [DOI] (P p)

M C Renna, N Najimudin, L R Winik, S A Zahler
Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin.
J Bacteriol: 1993, 175(12);3863-75
[PubMed:7685336] [WorldCat.org] [DOI] (P p)