Difference between revisions of "KinC"
m (Reverted edits by 134.76.70.252 (talk) to last revision by Jstuelk) |
|||
Line 114: | Line 114: | ||
* '''Operon:''' kinC (according to [http://dbtbs.hgc.jp/COG/prom/kinC.html DBTBS]) | * '''Operon:''' kinC (according to [http://dbtbs.hgc.jp/COG/prom/kinC.html DBTBS]) | ||
− | * '''[ | + | * '''Expression browser:''' [http://genome.jouy.inra.fr/cgi-bin/seb/viewdetail.py?id=kinC_1518333_1519619_1 kinC] {{PubMed|22383849}} |
+ | |||
+ | * '''Sigma factor:''' [[SigA]] {{PubMed|8002614}} | ||
* '''Regulation:''' | * '''Regulation:''' | ||
Line 122: | Line 124: | ||
** [[Spo0A]]: transcription activation [http://www.ncbi.nlm.nih.gov/sites/entrez/8002615 PubMed] | ** [[Spo0A]]: transcription activation [http://www.ncbi.nlm.nih.gov/sites/entrez/8002615 PubMed] | ||
− | * '''Additional information:''' | + | * '''Additional information:''' |
=Biological materials = | =Biological materials = |
Revision as of 08:06, 13 April 2012
- Description: two-component sensor kinase, phosphorylates Spo0F and Spo0A, part of the phosphorelay, governs expression of genes involved in biofilm formation
Gene name | kinC |
Synonyms | ssb |
Essential | no |
Product | two-component sensor kinase |
Function | initiation of sporulation |
Interactions involving this protein in SubtInteract: KinC | |
Function and regulation of this protein in SubtiPathways: Phosphorelay | |
MW, pI | 48 kDa, 6.225 |
Gene length, protein length | 1284 bp, 428 aa |
Immediate neighbours | abh, ykqA |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
Categories containing this gene/protein
protein modification, transcription factors and their control, phosphorelay, membrane proteins, phosphoproteins
This gene is a member of the following regulons
The gene
Basic information
- Locus tag: BSU14490
Phenotypes of a mutant
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity:
- Protein family:
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains: two transmembrane segments, C-terminal histidine phosphotransferase domain
- Modification: autophosphorylation on a His residue
- Cofactor(s):
- Effectors of protein activity:
Database entries
- Structure:
- UniProt: P39764
- KEGG entry: [3]
- E.C. number:
Additional information
Expression and regulation
- Operon: kinC (according to DBTBS)
- Additional information:
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
Your additional remarks
References
Anna L McLoon, Ilana Kolodkin-Gal, Shmuel M Rubinstein, Roberto Kolter, Richard Losick
Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis.
J Bacteriol: 2011, 193(3);679-85
[PubMed:21097618]
[WorldCat.org]
[DOI]
(I p)
Moshe Shemesh, Roberto Kolter, Richard Losick
The biocide chlorine dioxide stimulates biofilm formation in Bacillus subtilis by activation of the histidine kinase KinC.
J Bacteriol: 2010, 192(24);6352-6
[PubMed:20971918]
[WorldCat.org]
[DOI]
(I p)
Daniel López, Erin A Gontang, Roberto Kolter
Potassium sensing histidine kinase in Bacillus subtilis.
Methods Enzymol: 2010, 471;229-51
[PubMed:20946851]
[WorldCat.org]
[DOI]
(I p)
Daniel López, Roberto Kolter
Functional microdomains in bacterial membranes.
Genes Dev: 2010, 24(17);1893-902
[PubMed:20713508]
[WorldCat.org]
[DOI]
(I p)
Daniel López, Michael A Fischbach, Frances Chu, Richard Losick, Roberto Kolter
Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis.
Proc Natl Acad Sci U S A: 2009, 106(1);280-5
[PubMed:19114652]
[WorldCat.org]
[DOI]
(I p)
Jean-Christophe Meile, Ling Juan Wu, S Dusko Ehrlich, Jeff Errington, Philippe Noirot
Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: identification of new proteins at the DNA replication factory.
Proteomics: 2006, 6(7);2135-46
[PubMed:16479537]
[WorldCat.org]
[DOI]
(P p)
Masaya Fujita, Richard Losick
Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A.
Genes Dev: 2005, 19(18);2236-44
[PubMed:16166384]
[WorldCat.org]
[DOI]
(P p)
M Jiang, W Shao, M Perego, J A Hoch
Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis.
Mol Microbiol: 2000, 38(3);535-42
[PubMed:11069677]
[WorldCat.org]
[DOI]
(P p)
C Fabret, V A Feher, J A Hoch
Two-component signal transduction in Bacillus subtilis: how one organism sees its world.
J Bacteriol: 1999, 181(7);1975-83
[PubMed:10094672]
[WorldCat.org]
[DOI]
(P p)
K Kobayashi, K Shoji, T Shimizu, K Nakano, T Sato, Y Kobayashi
Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase.
J Bacteriol: 1995, 177(1);176-82
[PubMed:8002615]
[WorldCat.org]
[DOI]
(P p)
J R LeDeaux, A D Grossman
Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis.
J Bacteriol: 1995, 177(1);166-75
[PubMed:8002614]
[WorldCat.org]
[DOI]
(P p)