Difference between revisions of "Sandbox"
Line 1: | Line 1: | ||
− | * '''Description:''' | + | * '''Description:''' Glyceraldehyde 3-phosphate dehydrogenase, NAD-dependent, glycolytic enzyme <br/><br/> |
{| align="right" border="1" cellpadding="2" | {| align="right" border="1" cellpadding="2" | ||
|- | |- | ||
|style="background:#ABCDEF;" align="center"|'''Gene name''' | |style="background:#ABCDEF;" align="center"|'''Gene name''' | ||
− | |'' | + | |''gapA'' |
|- | |- | ||
− | |style="background:#ABCDEF;" align="center"| '''Synonyms''' || '' | + | |style="background:#ABCDEF;" align="center"| '''Synonyms''' || '' '' |
|- | |- | ||
− | |style="background:#ABCDEF;" align="center"| '''Essential''' || | + | |style="background:#ABCDEF;" align="center"| '''Essential''' || Yes [http://www.ncbi.nlm.nih.gov/sites/entrez/17114254 (PubMed)] |
|- | |- | ||
− | |style="background:#ABCDEF;" align="center"| '''Product''' || | + | |style="background:#ABCDEF;" align="center"| '''Product''' || glyceraldehyde 3-phosphate dehydrogenase |
|- | |- | ||
− | |style="background:#ABCDEF;" align="center"|'''Function''' || | + | |style="background:#ABCDEF;" align="center"|'''Function''' || catabolic enzyme in glycolysis |
|- | |- | ||
− | |style="background:#ABCDEF;" align="center"| '''MW, pI''' || | + | |style="background:#ABCDEF;" align="center"| '''MW, pI''' || 35.7 kDa, 5.03 |
|- | |- | ||
− | |style="background:#ABCDEF;" align="center"| '''Gene length, protein length''' || | + | |style="background:#ABCDEF;" align="center"| '''Gene length, protein length''' || 1005 bp, 335 amino acids |
|- | |- | ||
− | |style="background:#ABCDEF;" align="center"|'''Immediate neighbours''' || | + | |style="background:#ABCDEF;" align="center"|'''Immediate neighbours''' || ''[[cggR]]'', ''[[pgk]]'' |
|- | |- | ||
− | |style="background:#FAF8CC;" align="center"|'''[http://subtiwiki.uni-goettingen.de/ | + | |style="background:#FAF8CC;" align="center"|'''[http://subtiwiki.uni-goettingen.de/gapA_nucleotide.txt Gene sequence (+200bp) ]''' |
− | |style="background:#FAF8CC;" align="center"|'''[http://subtiwiki.uni-goettingen.de/ | + | |style="background:#FAF8CC;" align="center"|'''[http://subtiwiki.uni-goettingen.de/gapA_protein.txt Protein sequence]''' |
|- | |- | ||
− | |colspan="2" | '''Genetic context''' <br/> [[Image: | + | |colspan="2" | '''Genetic context''' <br/> [[Image:gapA_context.gif]] |
|- | |- | ||
|} | |} | ||
Line 31: | Line 31: | ||
<br/><br/> | <br/><br/> | ||
+ | |||
=The gene= | =The gene= | ||
=== Basic information === | === Basic information === | ||
− | * '''Coordinates:''' | + | * '''Coordinates:''' 3480732 - 3481736 |
===Phenotypes of a mutant === | ===Phenotypes of a mutant === | ||
essential [http://www.ncbi.nlm.nih.gov/pubmed/12682299 PubMed] | essential [http://www.ncbi.nlm.nih.gov/pubmed/12682299 PubMed] | ||
+ | |||
+ | essential [http://www.ncbi.nlm.nih.gov/pubmed/17114254 PubMed] | ||
=== Database entries === | === Database entries === | ||
− | * '''DBTBS entry:''' [http://dbtbs.hgc.jp/COG/prom/ | + | * '''DBTBS entry:''' [http://dbtbs.hgc.jp/COG/prom/cggR-gapA-pgk-tpiA-pgm-eno.html] |
− | * '''SubtiList entry:''' [http://genolist.pasteur.fr/SubtiList/genome.cgi?gene_detail+ | + | * '''SubtiList entry:'''[http://genolist.pasteur.fr/SubtiList/genome.cgi?gene_detail+BG10827] |
=== Additional information=== | === Additional information=== | ||
− | |||
=The protein= | =The protein= | ||
Line 53: | Line 55: | ||
=== Basic information/ Evolution === | === Basic information/ Evolution === | ||
− | * '''Catalyzed reaction/ biological activity:''' | + | * '''Catalyzed reaction/ biological activity:''' glyceraldehyde-3-phosphate dehydrogenase, (NADH-dependent). Catalyzes the reaction from glyceraldehyde-3-phosphate to 1.3-bi-phosphoglycerate. This reaction is part of the glycolysis. |
* '''Protein family:''' | * '''Protein family:''' | ||
− | * '''Paralogous protein(s):''' | + | * '''Paralogous protein(s):''' [[GapB]] |
=== Extended information on the protein === | === Extended information on the protein === | ||
− | * '''Kinetic information:''' | + | * '''Kinetic information:''' K(M) for NAD: 5.7 mM, K(cat) for NAD: 70/sec (determined for GapA from ''Geobacillus stearothermophilus'') [http://www.ncbi.nlm.nih.gov/sites/entrez/10799476 PubMed] |
* '''Domains:''' | * '''Domains:''' | ||
− | * '''Modification:''' | + | * '''Modification:''' Phosphorylation (STY) [http://www.ncbi.nlm.nih.gov/pubmed/17218307 PubMed] |
* '''Cofactor(s):''' | * '''Cofactor(s):''' | ||
Line 71: | Line 73: | ||
* '''Effectors of protein activity:''' | * '''Effectors of protein activity:''' | ||
− | * '''Interactions:''' | + | * '''Interactions:''' |
+ | ** GapA-[[PtsH]]: [[PtsH|HPr(Ser-46-P)]] binds GapA resulting in a slight inhibition of enzymatic activity.[http://www.ncbi.nlm.nih.gov/sites/entrez/17142398 PubMed] | ||
+ | ** GapA-[[Crh]]: [[Crh|Crh(Ser-46-P)]] binds GapA resulting in a slight inhibition of enzymatic activity.[http://www.ncbi.nlm.nih.gov/sites/entrez/17142398 PubMed] | ||
− | * '''Localization:''' | + | * '''Localization:''' cytoplasm [http://www.ncbi.nlm.nih.gov/sites/entrez/14600241 PubMed] [http://www.ncbi.nlm.nih.gov/sites/entrez/16479537 PubMed], loosely membrane associated[http://www.ncbi.nlm.nih.gov/pubmed/18763711 PubMed] |
=== Database entries === | === Database entries === | ||
− | * '''Structure:''' | + | * '''Structure:''' |
+ | ** [http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3CMC 3CMC] (from ''Geobacillus stearothermophilus'') | ||
+ | ** [http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1NQO 1NQO] (from ''Geobacillus stearothermophilus'', mutant with cys 149 replaced by ser, complex with NAD+ und D-Glyceraldehyde-3-Phosphate) | ||
− | * '''Swiss prot entry:''' | + | * '''Swiss prot entry:''' [http://www.expasy.ch/cgi-bin/sprot-search-ac?P09124 P09124] |
− | * '''KEGG entry:''' | + | * '''KEGG entry:''' [http://www.genome.jp/dbget-bin/www_bget?bsu:BSU33940 KEGG] |
− | * '''E.C. number:''' | + | * '''E.C. number:''' [http://www.expasy.ch/cgi-bin/get-enzyme-entry?1.2.1.12 1.2.1.12] |
=== Additional information=== | === Additional information=== | ||
+ | |||
+ | GAP dehydrogenases from different sources (incl. ''Geobacillus stearothermophilus'') were shown to cleave RNA ([http://www.ncbi.nlm.nih.gov/sites/entrez/12359717 PubMed]). Moreover, mutations in ''gapA'' from ''B. subtilis'' can suppress mutations in genes involved in DNA replication ([http://www.ncbi.nlm.nih.gov/sites/entrez/17505547 PubMed]). | ||
=Expression and regulation= | =Expression and regulation= | ||
* '''Operon:''' | * '''Operon:''' | ||
+ | ** ''[[cggR]]-[[gapA]]-[[pgk]]-[[tpi]]-[[pgm]]-[[eno]]'' | ||
+ | ** ''[[cggR]]-[[gapA]]'' | ||
− | + | The primary mRNAs of the operon are highly unstable. The primary mRNA is subject to processing at the very end of the ''[[cggR]]'' open reading frame. This results in stable mature ''[[gapA]]'' and ''[[gapA]]-[[pgk]]-[[tpiA]]-[[pgm]]-[[eno]]'' mRNAs. The processing event requires the [[Rny]] protein. | |
− | * ''' | + | * '''Sigma factor:''' [[SigA]] |
− | * ''' | + | * '''Regulation:''' [[CggR]] represses the operon in the absence of glycolytic sugars [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=+12622823 PubMed] |
− | * '''Additional information:''' | + | * '''Regulatory mechanism:''' repression |
+ | |||
+ | * '''Database entries:''' [http://dbtbs.hgc.jp/COG/prom/cggR-gapA-pgk-tpiA-pgm-eno.html DBTBS] | ||
+ | |||
+ | * '''Additional information:''' GapA is one of the most abundant proteins in the cell. In the presence of glucose, there are about 25,000 GapA molecules per cell ([http://www.ncbi.nlm.nih.gov/sites/entrez/12634343 PubMed]). | ||
=Biological materials = | =Biological materials = | ||
− | * '''Mutant:''' | + | * '''Mutant:''' essential |
− | * '''Expression vector:''' | + | * '''Expression vector:''' pGP90 (N-terminal Strep-tag, purification from ''B. subtilis'', in [[pGP380]]), pGP704 (N-terminal His-tag, in [[pWH844]]) (available in [[Stülke]] lab) |
− | + | ||
− | * '''lacZ fusion:''' | + | * '''lacZ fusion:''' pGP506 (in [[pAC7]]), pGP512 (in [[pAC6]]) (available in [[Stülke]] lab) |
* '''GFP fusion:''' | * '''GFP fusion:''' | ||
− | * '''two-hybrid system:''' | + | * '''two-hybrid system:''' ''B. pertussis'' adenylate cyclase-based bacterial two hybrid system ([[BACTH]]), available in [[Stülke]] lab |
− | * '''Antibody:''' | + | * '''Antibody:''' available in [[Stülke]] lab |
=Labs working on this gene/protein= | =Labs working on this gene/protein= | ||
+ | |||
+ | [[Stephane Aymerich |Stephane Aymerich]], Microbiology and Molecular Genetics, INRA Paris-Grignon, France | ||
+ | |||
+ | [[Stülke|Jörg Stülke]], University of Göttingen, Germany | ||
+ | [http://wwwuser.gwdg.de/~genmibio/stuelke.html homepage] | ||
=Your additional remarks= | =Your additional remarks= | ||
Line 119: | Line 138: | ||
=References= | =References= | ||
− | # | + | # Blencke, H.-M., Homuth, G., Ludwig, H., Mäder, U., Hecker, M. & Stülke, J. (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Engn. 5: 133-149. [http://www.ncbi.nlm.nih.gov/sites/entrez/12850135 PubMed] |
+ | # Commichau, F. M., Rothe, F. M., Herzberg, C., Wagner, E., Hellwig, D., Lehnik-Habrink, M., Hammer, E., Völker, U. & Stülke, J. Novel activities of glycolytic enzymes in Bacillus subtilis: Interactions with essential proteins involved in mRNA processing. subm. | ||
+ | # Doan, T., and S. Aymerich. 2003. Regulation of the central glycolytic pathways in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol. Microbiol. 47: 1709-1721. [http://www.ncbi.nlm.nih.gov/sites/entrez/12622823 PubMed] | ||
+ | # Evguenieva-Hackenberg, E., Schiltz, E., and Klug, G. (2002) Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 277, 46145-46150. [http://www.ncbi.nlm.nih.gov/sites/entrez/12359717 PubMed] | ||
+ | # Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G., and Aymerich, S. (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275, 14031-14037. [http://www.ncbi.nlm.nih.gov/sites/entrez/10799476 PubMed] | ||
+ | # Jannière, L., Canceill, D., Suski, C., Kanga, S., Dalmais, B., Lestini, R., Monnier, A. F., Chapuis, J., Bolotin, A., Titok, M., Le Chatelier, E., and Ehrlich, S. D. (2007) Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2, e447. [http://www.ncbi.nlm.nih.gov/sites/entrez/17505547 PubMed] | ||
+ | # Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F. M., Hecker, M., and Stülke, J. (2001) Transcription of glycolytic genes and operons in ''Bacillus subtilis'': evidence for the presence of multiple levels of control of the ''gapA'' operon. Mol Microbiol 41, 409-422.[http://www.ncbi.nlm.nih.gov/sites/entrez/11489127 PubMed] | ||
+ | # Ludwig, H., Rebhan, N., Blencke, H.-M., Merzbacher, M. & Stülke, J. (2002). Control of the glycolytic ''gapA'' operon by the catabolite control protein A in ''Bacillus subtilis'': a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45, 543-553.[http://www.ncbi.nlm.nih.gov/sites/entrez/12123463 PubMed] | ||
+ | # Macek et al. (2007) The serine/ threonine/ tyrosine phosphoproteome of the model bacterium ''Bacillus subtilis''. Mol. Cell. Proteomics 6: 697-707 [http://www.ncbi.nlm.nih.gov/pubmed/17218307 PubMed] | ||
+ | # Meinken, C., Blencke, H. M., Ludwig, H., and Stülke, J. (2003) Expression of the glycolytic ''gapA'' operon in ''Bacillus subtilis'': differential synthesis of proteins encoded by the operon. Microbiology 149, 751-761. [http://www.ncbi.nlm.nih.gov/sites/entrez/12634343 PubMed] | ||
+ | # Pompeo ''et al.'' (2007) Interaction of GapA with HPr and its homologue, Crh: Novel levels of regulation of a key step of glycolysis in ''Bacillus subtilis''? J Bacteriol 189, 1154-1157.[http://www.ncbi.nlm.nih.gov/sites/entrez/17142398 PubMed] | ||
+ | # Thomaides, H. B., Davison, E. J., Burston, L., Johnson, H., Brown, D. R., Hunt, A. C., Errington, J., and Czaplewski, L. (2007) Essential bacterial functions encoded by gene pairs. J Bacteriol 189, 591-602. [http://www.ncbi.nlm.nih.gov/sites/entrez/17114254 PubMed] | ||
+ | # Tobisch, S., Zühlke, D., Bernhardt, J., Stülke, J., and Hecker, M. (1999) Role of CcpA in regulation of the central pathways of carbon catabolism in ''Bacillus subtilis''. J Bacteriol 181, 6996-7004.[http://www.ncbi.nlm.nih.gov/sites/entrez/10559165 PubMed] |
Revision as of 15:48, 9 February 2009
- Description: Glyceraldehyde 3-phosphate dehydrogenase, NAD-dependent, glycolytic enzyme
Gene name | gapA |
Synonyms | |
Essential | Yes (PubMed) |
Product | glyceraldehyde 3-phosphate dehydrogenase |
Function | catabolic enzyme in glycolysis |
MW, pI | 35.7 kDa, 5.03 |
Gene length, protein length | 1005 bp, 335 amino acids |
Immediate neighbours | cggR, pgk |
Gene sequence (+200bp) | Protein sequence |
Genetic context |
Contents
The gene
Basic information
- Coordinates: 3480732 - 3481736
Phenotypes of a mutant
essential PubMed
essential PubMed
Database entries
- DBTBS entry: [1]
- SubtiList entry:[2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: glyceraldehyde-3-phosphate dehydrogenase, (NADH-dependent). Catalyzes the reaction from glyceraldehyde-3-phosphate to 1.3-bi-phosphoglycerate. This reaction is part of the glycolysis.
- Protein family:
- Paralogous protein(s): GapB
Extended information on the protein
- Kinetic information: K(M) for NAD: 5.7 mM, K(cat) for NAD: 70/sec (determined for GapA from Geobacillus stearothermophilus) PubMed
- Domains:
- Modification: Phosphorylation (STY) PubMed
- Cofactor(s):
- Effectors of protein activity:
- Interactions:
- GapA-PtsH: HPr(Ser-46-P) binds GapA resulting in a slight inhibition of enzymatic activity.PubMed
- GapA-Crh: Crh(Ser-46-P) binds GapA resulting in a slight inhibition of enzymatic activity.PubMed
Database entries
- Structure:
- Swiss prot entry: P09124
- KEGG entry: KEGG
- E.C. number: 1.2.1.12
Additional information
GAP dehydrogenases from different sources (incl. Geobacillus stearothermophilus) were shown to cleave RNA (PubMed). Moreover, mutations in gapA from B. subtilis can suppress mutations in genes involved in DNA replication (PubMed).
Expression and regulation
The primary mRNAs of the operon are highly unstable. The primary mRNA is subject to processing at the very end of the cggR open reading frame. This results in stable mature gapA and gapA-pgk-tpiA-pgm-eno mRNAs. The processing event requires the Rny protein.
- Sigma factor: SigA
- Regulatory mechanism: repression
- Database entries: DBTBS
- Additional information: GapA is one of the most abundant proteins in the cell. In the presence of glucose, there are about 25,000 GapA molecules per cell (PubMed).
Biological materials
- Mutant: essential
- Expression vector: pGP90 (N-terminal Strep-tag, purification from B. subtilis, in pGP380), pGP704 (N-terminal His-tag, in pWH844) (available in Stülke lab)
- GFP fusion:
- two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Stülke lab
- Antibody: available in Stülke lab
Labs working on this gene/protein
Stephane Aymerich, Microbiology and Molecular Genetics, INRA Paris-Grignon, France
Jörg Stülke, University of Göttingen, Germany homepage
Your additional remarks
References
- Blencke, H.-M., Homuth, G., Ludwig, H., Mäder, U., Hecker, M. & Stülke, J. (2003) Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Engn. 5: 133-149. PubMed
- Commichau, F. M., Rothe, F. M., Herzberg, C., Wagner, E., Hellwig, D., Lehnik-Habrink, M., Hammer, E., Völker, U. & Stülke, J. Novel activities of glycolytic enzymes in Bacillus subtilis: Interactions with essential proteins involved in mRNA processing. subm.
- Doan, T., and S. Aymerich. 2003. Regulation of the central glycolytic pathways in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol. Microbiol. 47: 1709-1721. PubMed
- Evguenieva-Hackenberg, E., Schiltz, E., and Klug, G. (2002) Dehydrogenases from all three domains of life cleave RNA. J Biol Chem 277, 46145-46150. PubMed
- Fillinger, S., Boschi-Muller, S., Azza, S., Dervyn, E., Branlant, G., and Aymerich, S. (2000) Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275, 14031-14037. PubMed
- Jannière, L., Canceill, D., Suski, C., Kanga, S., Dalmais, B., Lestini, R., Monnier, A. F., Chapuis, J., Bolotin, A., Titok, M., Le Chatelier, E., and Ehrlich, S. D. (2007) Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2, e447. PubMed
- Ludwig, H., Homuth, G., Schmalisch, M., Dyka, F. M., Hecker, M., and Stülke, J. (2001) Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41, 409-422.PubMed
- Ludwig, H., Rebhan, N., Blencke, H.-M., Merzbacher, M. & Stülke, J. (2002). Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45, 543-553.PubMed
- Macek et al. (2007) The serine/ threonine/ tyrosine phosphoproteome of the model bacterium Bacillus subtilis. Mol. Cell. Proteomics 6: 697-707 PubMed
- Meinken, C., Blencke, H. M., Ludwig, H., and Stülke, J. (2003) Expression of the glycolytic gapA operon in Bacillus subtilis: differential synthesis of proteins encoded by the operon. Microbiology 149, 751-761. PubMed
- Pompeo et al. (2007) Interaction of GapA with HPr and its homologue, Crh: Novel levels of regulation of a key step of glycolysis in Bacillus subtilis? J Bacteriol 189, 1154-1157.PubMed
- Thomaides, H. B., Davison, E. J., Burston, L., Johnson, H., Brown, D. R., Hunt, A. C., Errington, J., and Czaplewski, L. (2007) Essential bacterial functions encoded by gene pairs. J Bacteriol 189, 591-602. PubMed
- Tobisch, S., Zühlke, D., Bernhardt, J., Stülke, J., and Hecker, M. (1999) Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol 181, 6996-7004.PubMed