Difference between revisions of "Phosphorelay"
(→Reviews) |
(→A mathematical model) |
||
Line 74: | Line 74: | ||
==A mathematical model== | ==A mathematical model== | ||
− | <pubmed> 20238180 25341802 </pubmed> | + | <pubmed> 20238180 25341802 27122155</pubmed> |
==Reviews== | ==Reviews== |
Revision as of 17:31, 30 April 2016
Parent categories | |
Neighbouring categories |
|
Related categories | |
Parent categories | |
Neighbouring categories |
|
Related categories |
see Table to the right |
Contents
- 1 The kinases
- 2 Proteins controlliing the activity of the kinases
- 3 The phosphotransferases
- 4 The ultimate target
- 5 Phosphatases controlling the phosphorelay (and peptides that modulate their activity)
- 6 Other protein controlling the activity of the phosphorelay
- 7 A mathematical model
- 8 Reviews
- 9 Important original publications
- 10 Back to categories
The phosphorelay is a complex variation of a two-component regulatory system. It includes phosphotransferases that transfer the phosphoryl group from the sensor kinases to the ultimate target. The sporulation initiation phosphorelay is the paradigm of this class of signal transduction systems.
The kinases
- KinA (controlled by Sda, SivA, BslA, KipI, and KipA)
- KinB (controlled by Sda, KbaA, and KapB)
- KinC
- KinD
- KinE
Proteins controlliing the activity of the kinases
The phosphotransferases
The ultimate target
Phosphatases controlling the phosphorelay (and peptides that modulate their activity)
- Spo0E: dephosphorylation of Spo0A
- YisI: dephosphorylation of Spo0A
- YnzD: dephosphorylation of Spo0A
- RapA, PhrA: dephosphorylation of Spo0F
- RapB: dephosphorylation of Spo0F
- RapE, PhrE: dephosphorylation of Spo0F
- RapH: dephosphorylation of Spo0F
- RapP: dephosphorylation of Spo0F PubMed
Other protein controlling the activity of the phosphorelay
A mathematical model
Heiko Babel, Ilka B Bischofs
Molecular and cellular factors control signal transduction via switchable allosteric modulator proteins (SAMPs).
BMC Syst Biol: 2016, 10;35
[PubMed:27122155]
[WorldCat.org]
[DOI]
(I e)
Adaoha E C Ihekwaba, Ivan Mura, Gary C Barker
Computational modelling and analysis of the molecular network regulating sporulation initiation in Bacillus subtilis.
BMC Syst Biol: 2014, 8;119
[PubMed:25341802]
[WorldCat.org]
[DOI]
(I e)
Sara Jabbari, John T Heap, John R King
Mathematical modelling of the sporulation-initiation network in Bacillus subtilis revealing the dual role of the putative quorum-sensing signal molecule PhrA.
Bull Math Biol: 2011, 73(1);181-211
[PubMed:20238180]
[WorldCat.org]
[DOI]
(I p)
Reviews
Important original publications