Difference between revisions of "Biofilm formation"
(→Key reviews) |
|||
Line 8: | Line 8: | ||
|Neighbours= | |Neighbours= | ||
* 4.1.1. [[Motility and chemotaxis]] | * 4.1.1. [[Motility and chemotaxis]] | ||
− | * 4.1.2. [[Biofilm formation]] | + | * 4.1.2. [[Swarming]] |
− | * 4.1. | + | * 4.1.3. [[Sliding]] |
+ | * 4.1.4. [[Biofilm formation]] | ||
+ | * 4.1.5. [[Genetic competence]] | ||
|Related= | |Related= | ||
[[SinR regulon]] | [[SinR regulon]] |
Revision as of 08:06, 21 July 2014
Biofilms are the result of the multicellular lifestyle of B. subtilis. They are characterized by the formation of a matrix polysaccharide and an amyloid-like protein, TasA. Correction of sfp, epsC, swrAA, and degQ as well as introduction of rapP from a plasmid present in NCIB3610 results in biofilm formation in B. subtilis 168 PubMed.
Parent categories | |
Neighbouring categories |
|
Related categories | |
Contents
Biofilm formation in SubtiPathways
Labs working on biofilm formation
- Daniel Kearns
- Roberto Kolter
- Akos T Kovacs
- Oscar Kuipers
- Beth Lazazzera
- Richard Losick
- Nicola Stanley-Wall
- Jörg Stülke
Key genes and operons involved in biofilm formation
- matrix polysaccharide synthesis:
- amyloid protein synthesis, secretion and assembly
- repellent surface layer
- regulation
- other proteins required for biofilm formation
Important original publications
Key reviews