Difference between revisions of "Biofilm formation"
(→Important original publications) |
|||
Line 77: | Line 77: | ||
==Important original publications== | ==Important original publications== | ||
− | <pubmed> 23271809, 23300252 21267464 21278284 16091050 22232655 22371091 22541437 23341623 23406351 23012477,22934631 23517761 23569226 23564171 23637960 </pubmed> | + | <pubmed> 23271809, 23300252 21267464 21278284 16091050 22232655 22371091 22541437 23341623 23406351 23012477,22934631 23517761 23569226 23564171 23637960 23645570 </pubmed> |
==Key reviews== | ==Key reviews== |
Revision as of 11:33, 7 May 2013
Biofilms are the result of the multicellular lifestyle of B. subtilis. They are characterized by the formation of a matrix polysaccharide and an amyloid-like protein, TasA. Correction of sfp, epsC, swrAA, and degQ as well as introduction of rapP from a plasmid present in NCIB3610 results in biofilm formation in B. subtilis 168 PubMed.
Parent categories | |
Neighbouring categories |
|
Related categories | |
Contents
Biofilm formation in SubtiPathways
Labs working on biofilm formation
- Daniel Kearns
- Roberto Kolter
- Akos T Kovacs
- Oscar Kuipers
- Beth Lazazzera
- Richard Losick
- Nicola Stanley-Wall
- Jörg Stülke
Key genes and operons involved in biofilm formation
- matrix polysaccharide synthesis:
- amyloid protein synthesis, secretion and assembly
- repellent surface layer
- regulation
- biofilm disassembly (D-amino acids produced by RacX and YlmE and norspermidine produced by GabT and YaaO act together in preventing biofilm formation and triggering biofilm disassembly PubMed)
- other proteins required for biofilm formation
Important original publications
Key reviews
Hera Vlamakis, Yunrong Chai, Pascale Beauregard, Richard Losick, Roberto Kolter
Sticking together: building a biofilm the Bacillus subtilis way.
Nat Rev Microbiol: 2013, 11(3);157-68
[PubMed:23353768]
[WorldCat.org]
[DOI]
(I p)
Elizabeth Anne Shank, Roberto Kolter
Extracellular signaling and multicellularity in Bacillus subtilis.
Curr Opin Microbiol: 2011, 14(6);741-7
[PubMed:22024380]
[WorldCat.org]
[DOI]
(I p)
Adam Driks
Tapping into the biofilm: insights into assembly and disassembly of a novel amyloid fibre in Bacillus subtilis.
Mol Microbiol: 2011, 80(5);1133-6
[PubMed:21488983]
[WorldCat.org]
[DOI]
(I p)
Tjakko Abee, Akos T Kovács, Oscar P Kuipers, Stijn van der Veen
Biofilm formation and dispersal in Gram-positive bacteria.
Curr Opin Biotechnol: 2011, 22(2);172-9
[PubMed:21109420]
[WorldCat.org]
[DOI]
(I p)
Roberto Kolter
Biofilms in lab and nature: a molecular geneticist's voyage to microbial ecology.
Int Microbiol: 2010, 13(1);1-7
[PubMed:20890834]
[WorldCat.org]
[DOI]
(I p)
Massimiliano Marvasi, Pieter T Visscher, Lilliam Casillas Martinez
Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis.
FEMS Microbiol Lett: 2010, 313(1);1-9
[PubMed:20735481]
[WorldCat.org]
[DOI]
(I p)
Daniel López, Hera Vlamakis, Roberto Kolter
Biofilms.
Cold Spring Harb Perspect Biol: 2010, 2(7);a000398
[PubMed:20519345]
[WorldCat.org]
[DOI]
(I p)
Daniel Lopez, Hera Vlamakis, Roberto Kolter
Generation of multiple cell types in Bacillus subtilis.
FEMS Microbiol Rev: 2009, 33(1);152-63
[PubMed:19054118]
[WorldCat.org]
[DOI]
(P p)
Hera Vlamakis, Claudio Aguilar, Richard Losick, Roberto Kolter
Control of cell fate by the formation of an architecturally complex bacterial community.
Genes Dev: 2008, 22(7);945-53
[PubMed:18381896]
[WorldCat.org]
[DOI]
(P p)
Wolf-Rainer Abraham
Controlling biofilms of gram-positive pathogenic bacteria.
Curr Med Chem: 2006, 13(13);1509-24
[PubMed:16787201]
[WorldCat.org]
[DOI]
(P p)
J A Shapiro
Thinking about bacterial populations as multicellular organisms.
Annu Rev Microbiol: 1998, 52;81-104
[PubMed:9891794]
[WorldCat.org]
[DOI]
(P p)