Difference between revisions of "T-box"
(→Genes controlled by T-box elements) |
|||
(23 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | The T-box element is | + | The T-box element is an [[RNA switch]] that controls genes involved in amino acid metabolism. |
In the absence of an amino acid, the uncharged tRNA binds the T-box region in the leader region of the mRNA of the controlled gene/ operon and thereby prevents the formation of a transcription terminator. The result is gene expression of the target gene in the absence of the specific amino acid. | In the absence of an amino acid, the uncharged tRNA binds the T-box region in the leader region of the mRNA of the controlled gene/ operon and thereby prevents the formation of a transcription terminator. The result is gene expression of the target gene in the absence of the specific amino acid. | ||
− | == | + | ==Complete list of genes controlled by T-box elements== |
* Induction by alanine limitation | * Induction by alanine limitation | ||
Line 15: | Line 15: | ||
* Induction by glycine limitation | * Induction by glycine limitation | ||
− | ** ''[[glyQ]]-[[glyS]]'' | + | ** ''[[glyA]], [[glyQ]]-[[glyS]]'' |
* Induction by histidine limitation | * Induction by histidine limitation | ||
Line 21: | Line 21: | ||
* Induction by isoleucine limitation | * Induction by isoleucine limitation | ||
− | ** ''[[ileS]]'' | + | ** ''[[ileS]]'', ''[[ilvB]]-[[ilvH]]-[[ilvC]]-[[leuA]]-[[leuA]]-[[leuC]]-[[leuD]]'' |
* Induction by leucine limitation | * Induction by leucine limitation | ||
− | ** ''[[leuS]]'' | + | ** ''[[leuS]]'', ''[[ilvB]]-[[ilvH]]-[[ilvC]]-[[leuA]]-[[leuA]]-[[leuC]]-[[leuD]]'', ''[[yvbW]]'' |
* Induction by phenyalanine limitation | * Induction by phenyalanine limitation | ||
** ''[[pheS]]-[[pheT]]'' | ** ''[[pheS]]-[[pheT]]'' | ||
+ | |||
+ | * Induction by proline limitation | ||
+ | ** ''[[proB]]-[[proA]]'', ''[[proI]]'' | ||
* Induction by serine limitation | * Induction by serine limitation | ||
− | ** ''[[serS]]'' | + | ** ''[[serS]]'' |
* Induction by threonine limitation | * Induction by threonine limitation | ||
− | ** ''[[thrS]], [[thrZ]]'' | + | ** ''[[thrS]], [[thrZ]]-[[ywhA]]'' |
* Induction by tryptophan limitation | * Induction by tryptophan limitation | ||
− | ** ''[[rtpA]]-[[ycbK]]'' | + | ** ''[[rtpA]]-[[ycbK]]'', ''[[trpS]]'' |
+ | |||
+ | * Induction by tyrosine limitation | ||
+ | ** ''[[tyrS]], [[tyrZ]]'' | ||
+ | |||
+ | * Induction by valine limitation | ||
+ | ** ''[[valS]]'', ''[[ilvB]]-[[ilvH]]-[[ilvC]]-[[leuA]]-[[leuA]]-[[leuC]]-[[leuD]]'' | ||
+ | |||
+ | ==Structure of a T-box ribowsitch== | ||
+ | |||
+ | <pubmed>28621923 12547201 31740854 </pubmed> | ||
==Reviews on T-box regulation== | ==Reviews on T-box regulation== | ||
− | <pubmed> 19258532</pubmed> | + | <pubmed> 19258532,7527891, 11917026 ,8348614,17381302 10546897 19932103 18625071 24954903 24816551 32882008</pubmed> |
+ | |||
+ | =See also:= | ||
+ | * [[RNA switch]] | ||
+ | |||
+ | =Back to [[regulons]]= |
Latest revision as of 08:40, 5 January 2021
The T-box element is an RNA switch that controls genes involved in amino acid metabolism.
In the absence of an amino acid, the uncharged tRNA binds the T-box region in the leader region of the mRNA of the controlled gene/ operon and thereby prevents the formation of a transcription terminator. The result is gene expression of the target gene in the absence of the specific amino acid.
Contents
Complete list of genes controlled by T-box elements
- Induction by alanine limitation
- Induction by serine limitation
Structure of a T-box ribowsitch
Shuang Li, Zhaoming Su, Jean Lehmann, Vassiliki Stamatopoulou, Nikoleta Giarimoglou, Frances E Henderson, Lixin Fan, Grigore D Pintilie, Kaiming Zhang, Muyuan Chen, Steven J Ludtke, Yun-Xing Wang, Constantinos Stathopoulos, Wah Chiu, Jinwei Zhang
Structural basis of amino acid surveillance by higher-order tRNA-mRNA interactions.
Nat Struct Mol Biol: 2019, 26(12);1094-1105
[PubMed:31740854]
[WorldCat.org]
[DOI]
(I p)
Xianyang Fang, Malgorzata Michnicka, Yikan Zhang, Yun-Xing Wang, Edward P Nikonowicz
Capture and Release of tRNA by the T-Loop Receptor in the Function of the T-Box Riboswitch.
Biochemistry: 2017, 56(28);3549-3558
[PubMed:28621923]
[WorldCat.org]
[DOI]
(I p)
Melinda S Gerdeman, Tina M Henkin, Jennifer V Hines
Solution structure of the Bacillus subtilis T-box antiterminator RNA: seven nucleotide bulge characterized by stacking and flexibility.
J Mol Biol: 2003, 326(1);189-201
[PubMed:12547201]
[WorldCat.org]
[DOI]
(P p)
Reviews on T-box regulation
Jorge A Marchand, Merrick D Pierson Smela, Thomas H H Jordan, Kamesh Narasimhan, George M Church
TBDB: a database of structurally annotated T-box riboswitch:tRNA pairs.
Nucleic Acids Res: 2021, 49(D1);D229-D235
[PubMed:32882008]
[WorldCat.org]
[DOI]
(I p)
Jinwei Zhang, Adrian R Ferré-D'Amaré
Direct evaluation of tRNA aminoacylation status by the T-box riboswitch using tRNA-mRNA stacking and steric readout.
Mol Cell: 2014, 55(1);148-55
[PubMed:24954903]
[WorldCat.org]
[DOI]
(I p)
Tina M Henkin
The T box riboswitch: A novel regulatory RNA that utilizes tRNA as its ligand.
Biochim Biophys Acta: 2014, 1839(10);959-963
[PubMed:24816551]
[WorldCat.org]
[DOI]
(P p)
Nicholas J Green, Frank J Grundy, Tina M Henkin
The T box mechanism: tRNA as a regulatory molecule.
FEBS Lett: 2010, 584(2);318-24
[PubMed:19932103]
[WorldCat.org]
[DOI]
(I p)
Ana Gutiérrez-Preciado, Tina M Henkin, Frank J Grundy, Charles Yanofsky, Enrique Merino
Biochemical features and functional implications of the RNA-based T-box regulatory mechanism.
Microbiol Mol Biol Rev: 2009, 73(1);36-61
[PubMed:19258532]
[WorldCat.org]
[DOI]
(I p)
Michiel Wels, Tom Groot Kormelink, Michiel Kleerebezem, Roland J Siezen, Christof Francke
An in silico analysis of T-box regulated genes and T-box evolution in prokaryotes, with emphasis on prediction of substrate specificity of transporters.
BMC Genomics: 2008, 9;330
[PubMed:18625071]
[WorldCat.org]
[DOI]
(I e)
T M Henkin, F J Grundy
Sensing metabolic signals with nascent RNA transcripts: the T box and S box riboswitches as paradigms.
Cold Spring Harb Symp Quant Biol: 2006, 71;231-7
[PubMed:17381302]
[WorldCat.org]
[DOI]
(P p)
Frank J Grundy, Tessa R Moir, Margaret T Haldeman, Tina M Henkin
Sequence requirements for terminators and antiterminators in the T box transcription antitermination system: disparity between conservation and functional requirements.
Nucleic Acids Res: 2002, 30(7);1646-55
[PubMed:11917026]
[WorldCat.org]
[DOI]
(I p)
M Pelchat, J Lapointe
Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation.
Biochem Cell Biol: 1999, 77(4);343-7
[PubMed:10546897]
[WorldCat.org]
(P p)
T M Henkin
tRNA-directed transcription antitermination.
Mol Microbiol: 1994, 13(3);381-7
[PubMed:7527891]
[WorldCat.org]
[DOI]
(P p)
F J Grundy, T M Henkin
tRNA as a positive regulator of transcription antitermination in B. subtilis.
Cell: 1993, 74(3);475-82
[PubMed:8348614]
[WorldCat.org]
[DOI]
(P p)