Difference between revisions of "Biofilm formation"
(→Important original publications) |
|||
(106 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | Biofilms are the result of the multicellular lifestyle of ''B. subtilis''. They are characterized by the formation of a matrix polysaccharide and an amyloid-like protein, [[TasA]]. | + | Biofilms are the result of the multicellular lifestyle of ''B. subtilis''. They are characterized by the formation of a matrix polysaccharide (poly-N-acetyl glucosamine as a major polysaccharide {{PubMed|26078454}}) and an amyloid-like protein, [[TasA]]. Correction of ''[[sfp]]'', ''[[epsC]]'','' [[swrAA]]'', and ''[[degQ]]'' as well as introduction of ''rapP'' from a plasmid present in NCIB3610 results in biofilm formation in ''B. subtilis'' 168 {{PubMed|21278284}}. |
+ | |||
+ | {{CategoryTree | ||
+ | |Parents= | ||
+ | * 4. [[Lifestyles]] | ||
+ | ** 4.1. [[Exponential and early post-exponential lifestyles]] | ||
+ | |Neighbours= | ||
+ | * 4.1.1. [[Motility and chemotaxis]] | ||
+ | * 4.1.2. [[Swarming]] | ||
+ | * 4.1.3. [[Sliding]] | ||
+ | * 4.1.4. [[Biofilm formation]] | ||
+ | * 4.1.5. [[Genetic competence]] | ||
+ | |Related= | ||
+ | [[SinR regulon]] | ||
+ | |}} | ||
+ | |||
+ | __TOC__ | ||
+ | <br><br><br> | ||
==[http://subtiwiki.uni-goettingen.de/pathways/biofilm.html Biofilm formation in ''Subti''Pathways]== | ==[http://subtiwiki.uni-goettingen.de/pathways/biofilm.html Biofilm formation in ''Subti''Pathways]== | ||
==Labs working on biofilm formation== | ==Labs working on biofilm formation== | ||
+ | * [[Roberto Grau]] | ||
* [[Daniel Kearns]] | * [[Daniel Kearns]] | ||
+ | * [[Roberto Kolter]] | ||
+ | * [[Akos T Kovacs]] | ||
* [[Oscar Kuipers]] | * [[Oscar Kuipers]] | ||
* [[Beth Lazazzera]] | * [[Beth Lazazzera]] | ||
* [[Richard Losick]] | * [[Richard Losick]] | ||
+ | * [[Eric Raspaud]] | ||
* [[Nicola Stanley-Wall]] | * [[Nicola Stanley-Wall]] | ||
+ | * [[Jörg Stülke]] | ||
==Key genes and operons involved in biofilm formation== | ==Key genes and operons involved in biofilm formation== | ||
− | * matrix polysaccharide synthesis: | + | * matrix polysaccharide synthesis {{PubMed|26078454}}: |
** ''[[epsA]]-[[epsB]]-[[epsC]]-[[epsD]]-[[epsE]]-[[epsF]]-[[epsG]]-[[epsH]]-[[epsI]]-[[epsJ]]-[[epsK]]-[[epsL]]-[[epsM]]-[[epsN]]-[[epsO]]'' | ** ''[[epsA]]-[[epsB]]-[[epsC]]-[[epsD]]-[[epsE]]-[[epsF]]-[[epsG]]-[[epsH]]-[[epsI]]-[[epsJ]]-[[epsK]]-[[epsL]]-[[epsM]]-[[epsN]]-[[epsO]]'' | ||
− | * amyloid protein synthesis | + | **'' [[galE]]'' |
− | ** ''[[ | + | * amyloid protein synthesis, secretion and assembly |
+ | ** ''[[tapA]]-[[sipW]]-[[tasA]]'' | ||
+ | * repellent surface layer | ||
+ | ** ''[[bslA]]'' | ||
* regulation | * regulation | ||
** [[SlrR]] | ** [[SlrR]] | ||
Line 20: | Line 45: | ||
** [[SinR]] | ** [[SinR]] | ||
** [[SinI]] | ** [[SinI]] | ||
+ | ** [[KinC]] | ||
+ | ** [[KinD]] | ||
+ | ** [[Spo0A]] | ||
** [[PtkA]] | ** [[PtkA]] | ||
** [[TkmA]] | ** [[TkmA]] | ||
** [[PtpZ]] | ** [[PtpZ]] | ||
** [[DegU]] | ** [[DegU]] | ||
− | ** [[ | + | ** [[DegQ]] |
− | * | + | ** [[YmdB]] |
− | ** [[ | + | ** [[FtsH]] |
+ | ** [[Veg]] | ||
+ | ** [[MstX]] | ||
+ | ** [[YugO]] | ||
+ | |||
* other proteins required for biofilm formation | * other proteins required for biofilm formation | ||
+ | ** [[AmpS]] | ||
+ | ** [[FloT]] | ||
+ | ** [[LuxS]] | ||
+ | ** [[RemA]] | ||
+ | ** [[RemB]] | ||
+ | ** [[Rny]] | ||
+ | ** [[Sfp/1]] | ||
+ | ** [[Sfp/2]] | ||
** [[SpeA]] | ** [[SpeA]] | ||
+ | ** [[SpeD]] | ||
+ | ** [[SwrAA]] | ||
+ | ** [[YisP]] | ||
+ | ** [[YlbF]] | ||
** [[YmcA]] | ** [[YmcA]] | ||
+ | ** [[YvcA]] | ||
+ | ** [[YwcC]] | ||
** [[YxaB]] | ** [[YxaB]] | ||
+ | |||
+ | * other proteins required for efficient pellicle biofilm formation (mutant is out-competed by wild type) | ||
+ | ** [[Hag]] | ||
+ | ** [[FlgE]] | ||
+ | ** [[FliF]] | ||
+ | ** [[MotA]] | ||
+ | ** [[SigD]] | ||
+ | ** [[CheA]] | ||
+ | ** [[CheY]] | ||
+ | ** [[CheD]] | ||
+ | ** [[CheV]] | ||
+ | ** [[HemAT]] | ||
+ | |||
+ | ==Important original publications== | ||
+ | <pubmed> 26122431, 26588577, 26152584, 26078454 25870300 26060272 25825426 23271809, 23300252 21267464 21278284 16091050 22232655 22371091 23341623 23406351 25768534 23012477,22934631 23517761 23569226 23564171 25035996 23637960 23645570 24256735 25422306 25680358 25713360 25894589 26200335 26873313 30297741 28462927,31113899 | ||
+ | </pubmed> | ||
==Key reviews== | ==Key reviews== | ||
− | <pubmed> | + | <pubmed>16787201,24771632, 9891794,19054118,20890834,21109420,20519345,18381896 22024380 20735481 23353768 23791621 23927648 24384602 24909922 26104716 24988880 24608334 25907113,30218468</pubmed> |
− | + | ||
+ | =Back to [[categories]]= |
Latest revision as of 08:49, 24 May 2019
Biofilms are the result of the multicellular lifestyle of B. subtilis. They are characterized by the formation of a matrix polysaccharide (poly-N-acetyl glucosamine as a major polysaccharide PubMed) and an amyloid-like protein, TasA. Correction of sfp, epsC, swrAA, and degQ as well as introduction of rapP from a plasmid present in NCIB3610 results in biofilm formation in B. subtilis 168 PubMed.
Parent categories | |
Neighbouring categories |
|
Related categories | |
Contents
Biofilm formation in SubtiPathways
Labs working on biofilm formation
- Roberto Grau
- Daniel Kearns
- Roberto Kolter
- Akos T Kovacs
- Oscar Kuipers
- Beth Lazazzera
- Richard Losick
- Eric Raspaud
- Nicola Stanley-Wall
- Jörg Stülke
Key genes and operons involved in biofilm formation
- matrix polysaccharide synthesis PubMed:
- amyloid protein synthesis, secretion and assembly
- repellent surface layer
- regulation
- other proteins required for biofilm formation
- other proteins required for efficient pellicle biofilm formation (mutant is out-competed by wild type)
Important original publications
Tippapha Pisithkul, Jeremy W Schroeder, Edna A Trujillo, Ponlkrit Yeesin, David M Stevenson, Tai Chaiamarit, Joshua J Coon, Jue D Wang, Daniel Amador-Noguez
Metabolic Remodeling during Biofilm Development of Bacillus subtilis.
mBio: 2019, 10(3);
[PubMed:31113899]
[WorldCat.org]
[DOI]
(I e)
Anna Dragoš, Marivic Martin, Carolina Falcón García, Lara Kricks, Patrick Pausch, Thomas Heimerl, Balázs Bálint, Gergely Maróti, Gert Bange, Daniel López, Oliver Lieleg, Ákos T Kovács
Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms.
Nat Microbiol: 2018, 3(12);1451-1460
[PubMed:30297741]
[WorldCat.org]
[DOI]
(I p)
Marivic Martin, Anna Dragoš, Theresa Hölscher, Gergely Maróti, Balázs Bálint, Martin Westermann, Ákos T Kovács
De novo evolved interference competition promotes the spread of biofilm defectors.
Nat Commun: 2017, 8;15127
[PubMed:28462927]
[WorldCat.org]
[DOI]
(I e)
Sara Kesel, Stefan Grumbein, Ina Gümperlein, Marwa Tallawi, Anna-Kristina Marel, Oliver Lieleg, Madeleine Opitz
Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms.
Appl Environ Microbiol: 2016, 82(8);2424-2432
[PubMed:26873313]
[WorldCat.org]
[DOI]
(I e)
Carine Douarche, Jean-Marc Allain, Eric Raspaud
Bacillus subtilis Bacteria Generate an Internal Mechanical Force within a Biofilm.
Biophys J: 2015, 109(10);2195-202
[PubMed:26588577]
[WorldCat.org]
[DOI]
(I p)
Jintao Liu, Arthur Prindle, Jacqueline Humphries, Marçal Gabalda-Sagarra, Munehiro Asally, Dong-yeon D Lee, San Ly, Jordi Garcia-Ojalvo, Gürol M Süel
Metabolic co-dependence gives rise to collective oscillations within biofilms.
Nature: 2015, 523(7562);550-4
[PubMed:26200335]
[WorldCat.org]
[DOI]
(I p)
Roberto R Grau, Paula de Oña, Maritta Kunert, Cecilia Leñini, Ramses Gallegos-Monterrosa, Eisha Mhatre, Darío Vileta, Verónica Donato, Theresa Hölscher, Wilhelm Boland, Oscar P Kuipers, Ákos T Kovács
A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis.
mBio: 2015, 6(4);e00581
[PubMed:26152584]
[WorldCat.org]
[DOI]
(I e)
Theresa Hölscher, Benjamin Bartels, Yu-Cheng Lin, Ramses Gallegos-Monterrosa, Alexa Price-Whelan, Roberto Kolter, Lars E P Dietrich, Ákos T Kovács
Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development.
J Mol Biol: 2015, 427(23);3695-3708
[PubMed:26122431]
[WorldCat.org]
[DOI]
(I p)
Damien Roux, Colette Cywes-Bentley, Yi-Fan Zhang, Stephanie Pons, Melissa Konkol, Daniel B Kearns, Dustin J Little, P Lynne Howell, David Skurnik, Gerald B Pier
Identification of Poly-N-acetylglucosamine as a Major Polysaccharide Component of the Bacillus subtilis Biofilm Matrix.
J Biol Chem: 2015, 290(31);19261-72
[PubMed:26078454]
[WorldCat.org]
[DOI]
(I p)
Yun Chen, Kevin Gozzi, Fang Yan, Yunrong Chai
Acetic Acid Acts as a Volatile Signal To Stimulate Bacterial Biofilm Formation.
mBio: 2015, 6(3);e00392
[PubMed:26060272]
[WorldCat.org]
[DOI]
(I e)
Jordi van Gestel, Hera Vlamakis, Roberto Kolter
From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.
PLoS Biol: 2015, 13(4);e1002141
[PubMed:25894589]
[WorldCat.org]
[DOI]
(I e)
Keith M Bromley, Ryan J Morris, Laura Hobley, Giovanni Brandani, Rachel M C Gillespie, Matthew McCluskey, Ulrich Zachariae, Davide Marenduzzo, Nicola R Stanley-Wall, Cait E MacPhee
Interfacial self-assembly of a bacterial hydrophobin.
Proc Natl Acad Sci U S A: 2015, 112(17);5419-24
[PubMed:25870300]
[WorldCat.org]
[DOI]
(I p)
Matthew J Powers, Edgardo Sanabria-Valentín, Albert A Bowers, Elizabeth A Shank
Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens.
J Bacteriol: 2015, 197(13);2129-2138
[PubMed:25825426]
[WorldCat.org]
[DOI]
(I p)
D R Espeso, A Carpio, B Einarsson
Differential growth of wrinkled biofilms.
Phys Rev E Stat Nonlin Soft Matter Phys: 2015, 91(2);022710
[PubMed:25768534]
[WorldCat.org]
[DOI]
(I p)
Rachel Bleich, Jeramie D Watrous, Pieter C Dorrestein, Albert A Bowers, Elizabeth A Shank
Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis.
Proc Natl Acad Sci U S A: 2015, 112(10);3086-91
[PubMed:25713360]
[WorldCat.org]
[DOI]
(I p)
Shaul Pollak, Shira Omer Bendori, Avigdor Eldar
A complex path for domestication of B. subtilis sociality.
Curr Genet: 2015, 61(4);493-6
[PubMed:25680358]
[WorldCat.org]
[DOI]
(I p)
Shira Omer Bendori, Shaul Pollak, Dorit Hizi, Avigdor Eldar
The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP.
J Bacteriol: 2015, 197(3);592-602
[PubMed:25422306]
[WorldCat.org]
[DOI]
(I p)
Hiraku Takada, Masato Morita, Yuh Shiwa, Ryoma Sugimoto, Shota Suzuki, Fujio Kawamura, Hirofumi Yoshikawa
Cell motility and biofilm formation in Bacillus subtilis are affected by the ribosomal proteins, S11 and S21.
Biosci Biotechnol Biochem: 2014, 78(5);898-907
[PubMed:25035996]
[WorldCat.org]
[DOI]
(I p)
Thomas M Norman, Nathan D Lord, Johan Paulsson, Richard Losick
Memory and modularity in cell-fate decision making.
Nature: 2013, 503(7477);481-486
[PubMed:24256735]
[WorldCat.org]
[DOI]
(I p)
Fernando Gómez-Aguado, María Teresa Corcuera, María Luisa Gómez-Lus, María Antonia de la Parte, Carmen Ramos, César García-Rey, María José Alonso, José Prieto
Histological approach to Bacillus subtilis colony-biofilm: evolving internal architecture and sporulation dynamics.
Histol Histopathol: 2013, 28(10);1351-60
[PubMed:23645570]
[WorldCat.org]
[DOI]
(I p)
Iztok Dogsa, Mojca Brloznik, David Stopar, Ines Mandic-Mulec
Exopolymer diversity and the role of levan in Bacillus subtilis biofilms.
PLoS One: 2013, 8(4);e62044
[PubMed:23637960]
[WorldCat.org]
[DOI]
(I e)
Pascale B Beauregard, Yunrong Chai, Hera Vlamakis, Richard Losick, Roberto Kolter
Bacillus subtilis biofilm induction by plant polysaccharides.
Proc Natl Acad Sci U S A: 2013, 110(17);E1621-30
[PubMed:23569226]
[WorldCat.org]
[DOI]
(I p)
Moshe Shemesh, Yunrong Chai
A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling.
J Bacteriol: 2013, 195(12);2747-54
[PubMed:23564171]
[WorldCat.org]
[DOI]
(I p)
A Bridier, T Meylheuc, R Briandet
Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM).
Micron: 2013, 48;65-9
[PubMed:23517761]
[WorldCat.org]
[DOI]
(I p)
Thomas Böttcher, Ilana Kolodkin-Gal, Roberto Kolter, Richard Losick, Jon Clardy
Synthesis and activity of biomimetic biofilm disruptors.
J Am Chem Soc: 2013, 135(8);2927-30
[PubMed:23406351]
[WorldCat.org]
[DOI]
(I p)
Miguel Trejo, Carine Douarche, Virginie Bailleux, Christophe Poulard, Sandrine Mariot, Christophe Regeard, Eric Raspaud
Elasticity and wrinkled morphology of Bacillus subtilis pellicles.
Proc Natl Acad Sci U S A: 2013, 110(6);2011-6
[PubMed:23341623]
[WorldCat.org]
[DOI]
(I p)
James N Wilking, Vasily Zaburdaev, Michael De Volder, Richard Losick, Michael P Brenner, David A Weitz
Liquid transport facilitated by channels in Bacillus subtilis biofilms.
Proc Natl Acad Sci U S A: 2013, 110(3);848-52
[PubMed:23271809]
[WorldCat.org]
[DOI]
(I p)
Munehiro Asally, Mark Kittisopikul, Pau Rué, Yingjie Du, Zhenxing Hu, Tolga Çağatay, Andra B Robinson, Hongbing Lu, Jordi Garcia-Ojalvo, Gürol M Süel
Localized cell death focuses mechanical forces during 3D patterning in a biofilm.
Proc Natl Acad Sci U S A: 2012, 109(46);18891-6
[PubMed:23012477]
[WorldCat.org]
[DOI]
(I p)
Yun Chen, Fang Yan, Yunrong Chai, Hongxia Liu, Roberto Kolter, Richard Losick, Jian-Hua Guo
Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation.
Environ Microbiol: 2013, 15(3);848-864
[PubMed:22934631]
[WorldCat.org]
[DOI]
(I p)
Juan C Garcia-Betancur, Ana Yepes, Johannes Schneider, Daniel Lopez
Single-cell analysis of Bacillus subtilis biofilms using fluorescence microscopy and flow cytometry.
J Vis Exp: 2012, (60);
[PubMed:22371091]
[WorldCat.org]
[DOI]
(I e)
Agnese Seminara, Thomas E Angelini, James N Wilking, Hera Vlamakis, Senan Ebrahim, Roberto Kolter, David A Weitz, Michael P Brenner
Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix.
Proc Natl Acad Sci U S A: 2012, 109(4);1116-21
[PubMed:22232655]
[WorldCat.org]
[DOI]
(I p)
Anna L McLoon, Sarah B Guttenplan, Daniel B Kearns, Roberto Kolter, Richard Losick
Tracing the domestication of a biofilm-forming bacterium.
J Bacteriol: 2011, 193(8);2027-34
[PubMed:21278284]
[WorldCat.org]
[DOI]
(I p)
Arnaud Bridier, Dominique Le Coq, Florence Dubois-Brissonnet, Vincent Thomas, Stéphane Aymerich, Romain Briandet
The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging.
PLoS One: 2011, 6(1);e16177
[PubMed:21267464]
[WorldCat.org]
[DOI]
(I e)
Nicola R Stanley, Beth A Lazazzera
Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation.
Mol Microbiol: 2005, 57(4);1143-58
[PubMed:16091050]
[WorldCat.org]
[DOI]
(P p)
Key reviews