Difference between revisions of "PhoP"

From SubtiWiki
Jump to: navigation, search
Line 138: Line 138:
  
 
* '''Mutant:'''
 
* '''Mutant:'''
 +
** 1A966 ( ''phoP''::''tet''), {{PubMed|14973033}}, available at [http://pasture.asc.ohio-state.edu/BGSC/getdetail.cfm?bgscid=1A966&Search=1A966 BGSC]
  
 
* '''Expression vector:'''
 
* '''Expression vector:'''

Revision as of 12:30, 19 September 2012

  • Description: two-component response regulator, regulation of phosphate metabolism

Gene name phoP
Synonyms
Essential no
Product two-component response regulator
Function regulation of phosphate metabolism
(phoA, phoB, phoD, resABCDE, tagA-tagB, tagDEF, tuaA-H)
Gene expression levels in SubtiExpress: phoP
Interactions involving this protein in SubtInteract: PhoP
Metabolic function and regulation of this protein in SubtiPathways:
Folate, Protein secretion
MW, pI 27 kDa, 5.068
Gene length, protein length 720 bp, 240 aa
Immediate neighbours phoR, mdh
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
PhoP context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
PhoP expression.png




























Categories containing this gene/protein

phosphate metabolism, transcription factors and their control, regulators of core metabolism, sporulation proteins, general stress proteins (controlled by SigB), membrane proteins, phosphoproteins

This gene is a member of the following regulons

CcpA regulon, PhoP regulon, SigB regulon, SigE regulon

The PhoP regulon

The gene

Basic information

  • Locus tag: BSU29110

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
  • Protein family:
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification: phosphorylation by PhoR under conditions of phosphate limitation (stimulates DNA-binding activity)
  • Cofactor(s):
  • Effectors of protein activity: phosphorylation stimulates DNA-binding activity

Database entries

  • Structure: 1MVO (receiver domain)
  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Regulation:
    • carbon catabolite repression (CcpA) PubMed
    • expressed under conditions of phosphate limitation (PhoP) PubMed
    • expressed in post-exponential phase (ScoC) PubMed
  • Additional information:

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Marion Hulett, University of Illinois at Chicago, USA Homepage

Your additional remarks

References

Regulation of phoP-phoR expression

Bindiya Kaushal, Salbi Paul, F Marion Hulett
Direct regulation of Bacillus subtilis phoPR transcription by transition state regulator ScoC.
J Bacteriol: 2010, 192(12);3103-13
[PubMed:20382764] [WorldCat.org] [DOI] (I p)

Ankita Puri-Taneja, Salbi Paul, Yinghua Chen, F Marion Hulett
CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6).
J Bacteriol: 2006, 188(4);1266-78
[PubMed:16452408] [WorldCat.org] [DOI] (P p)

Salbi Paul, Stephanie Birkey, Wei Liu, F Marion Hulett
Autoinduction of Bacillus subtilis phoPR operon transcription results from enhanced transcription from EsigmaA- and EsigmaE-responsive promoters by phosphorylated PhoP.
J Bacteriol: 2004, 186(13);4262-75
[PubMed:15205429] [WorldCat.org] [DOI] (P p)

Zoltán Prágai, Nicholas E E Allenby, Nicola O'Connor, Sarah Dubrac, Georges Rapoport, Tarek Msadek, Colin R Harwood
Transcriptional regulation of the phoPR operon in Bacillus subtilis.
J Bacteriol: 2004, 186(4);1182-90
[PubMed:14762014] [WorldCat.org] [DOI] (P p)

Hans-Matti Blencke, Georg Homuth, Holger Ludwig, Ulrike Mäder, Michael Hecker, Jörg Stülke
Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways.
Metab Eng: 2003, 5(2);133-49
[PubMed:12850135] [WorldCat.org] [DOI] (P p)

Biochemical analyses

Targets of PhoR

Additional publications: PubMed

Wael R Abdel-Fattah, Yinghua Chen, Amr Eldakak, F Marion Hulett
Bacillus subtilis phosphorylated PhoP: direct activation of the E(sigma)A- and repression of the E(sigma)E-responsive phoB-PS+V promoters during pho response.
J Bacteriol: 2005, 187(15);5166-78
[PubMed:16030210] [WorldCat.org] [DOI] (P p)

H Antelmann, C Scharf, M Hecker
Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis.
J Bacteriol: 2000, 182(16);4478-90
[PubMed:10913081] [WorldCat.org] [DOI] (P p)

S Eder, W Liu, F M Hulett
Mutational analysis of the phoD promoter in Bacillus subtilis: implications for PhoP binding and promoter activation of Pho regulon promoters.
J Bacteriol: 1999, 181(7);2017-25
[PubMed:10094677] [WorldCat.org] [DOI] (P p)

S M Birkey, W Liu, X Zhang, M F Duggan, F M Hulett
Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD.
Mol Microbiol: 1998, 30(5);943-53
[PubMed:9988472] [WorldCat.org] [DOI] (P p)

Y Qi, F M Hulett
Role of Pho-P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis.
J Bacteriol: 1998, 180(15);4007-10
[PubMed:9683503] [WorldCat.org] [DOI] (P p)

W Liu, Y Qi, F M Hulett
Sites internal to the coding regions of phoA and pstS bind PhoP and are required for full promoter activity.
Mol Microbiol: 1998, 28(1);119-30
[PubMed:9593301] [WorldCat.org] [DOI] (P p)

W Liu, S Eder, F M Hulett
Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P.
J Bacteriol: 1998, 180(3);753-8
[PubMed:9457886] [WorldCat.org] [DOI] (P p)

W Liu, F M Hulett
Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter.
J Bacteriol: 1997, 179(20);6302-10
[PubMed:9335276] [WorldCat.org] [DOI] (P p)

Y Qi, Y Kobayashi, F M Hulett
The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon.
J Bacteriol: 1997, 179(8);2534-9
[PubMed:9098050] [WorldCat.org] [DOI] (P p)


Other original publications

Matthew Schau, Amr Eldakak, F Marion Hulett
Terminal oxidases are essential to bypass the requirement for ResD for full Pho induction in Bacillus subtilis.
J Bacteriol: 2004, 186(24);8424-32
[PubMed:15576792] [WorldCat.org] [DOI] (P p)

C Fabret, V A Feher, J A Hoch
Two-component signal transduction in Bacillus subtilis: how one organism sees its world.
J Bacteriol: 1999, 181(7);1975-83
[PubMed:10094672] [WorldCat.org] [DOI] (P p)