Difference between revisions of "PhoP"
(→References) |
(→Targets of PhoR) |
||
Line 148: | Line 148: | ||
<pubmed>9680208, 9611818,12486063, 20167622 10433720, 17085571,14973033,12486062,</pubmed> | <pubmed>9680208, 9611818,12486063, 20167622 10433720, 17085571,14973033,12486062,</pubmed> | ||
==Targets of PhoR== | ==Targets of PhoR== | ||
− | <pubmed> | + | 21636651 |
+ | <pubmed>20059685 16030210, 10913081,10094677,9683503,9988472,9457886,9335276,9593301,9098050,</pubmed> | ||
+ | |||
==Other original publications== | ==Other original publications== | ||
<pubmed>10094672, 15576792,</pubmed> | <pubmed>10094672, 15576792,</pubmed> | ||
[[Category:Protein-coding genes]] | [[Category:Protein-coding genes]] |
Revision as of 15:46, 16 March 2012
- Description: two-component response regulator, regulation of phosphate metabolism
Gene name | phoP |
Synonyms | |
Essential | no |
Product | two-component response regulator |
Function | regulation of phosphate metabolism (phoA, phoB, phoD, resABCDE, tagA-tagB, tagDEF, tuaA-H) |
Interactions involving this protein in SubtInteract: PhoP | |
Metabolic function and regulation of this protein in SubtiPathways: Folate, Protein secretion | |
MW, pI | 27 kDa, 5.068 |
Gene length, protein length | 720 bp, 240 aa |
Immediate neighbours | phoR, mdh |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
Categories containing this gene/protein
phosphate metabolism, transcription factors and their control, regulators of core metabolism, sporulation proteins, general stress proteins (controlled by SigB), membrane proteins, phosphoproteins
This gene is a member of the following regulons
CcpA regulon, PhoP regulon, SigB regulon, SigE regulon
The PhoP regulon
The gene
Basic information
- Locus tag: BSU29110
Phenotypes of a mutant
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity:
- Protein family:
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- Modification: phosphorylation by PhoR under conditions of phosphate limitation (stimulates DNA-binding activity)
- Cofactor(s):
- Effectors of protein activity: phosphorylation stimulates DNA-binding activity
- Localization: cell membrane (according to Swiss-Prot)
Database entries
- Structure: 1MVO (receiver domain)
- UniProt: P13792
- KEGG entry: [3]
- E.C. number:
Additional information
Expression and regulation
- Regulation:
- Regulatory mechanism:
- Additional information:
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
Marion Hulett, University of Illinois at Chicago, USA Homepage
Your additional remarks
References
Regulation of phoP-phoR expression
Biochemical analyses
Targets of PhoR
21636651
Wael R Abdel-Fattah, Yinghua Chen, Amr Eldakak, F Marion Hulett
Bacillus subtilis phosphorylated PhoP: direct activation of the E(sigma)A- and repression of the E(sigma)E-responsive phoB-PS+V promoters during pho response.
J Bacteriol: 2005, 187(15);5166-78
[PubMed:16030210]
[WorldCat.org]
[DOI]
(P p)
H Antelmann, C Scharf, M Hecker
Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis.
J Bacteriol: 2000, 182(16);4478-90
[PubMed:10913081]
[WorldCat.org]
[DOI]
(P p)
S Eder, W Liu, F M Hulett
Mutational analysis of the phoD promoter in Bacillus subtilis: implications for PhoP binding and promoter activation of Pho regulon promoters.
J Bacteriol: 1999, 181(7);2017-25
[PubMed:10094677]
[WorldCat.org]
[DOI]
(P p)
S M Birkey, W Liu, X Zhang, M F Duggan, F M Hulett
Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD.
Mol Microbiol: 1998, 30(5);943-53
[PubMed:9988472]
[WorldCat.org]
[DOI]
(P p)
Y Qi, F M Hulett
Role of Pho-P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis.
J Bacteriol: 1998, 180(15);4007-10
[PubMed:9683503]
[WorldCat.org]
[DOI]
(P p)
W Liu, Y Qi, F M Hulett
Sites internal to the coding regions of phoA and pstS bind PhoP and are required for full promoter activity.
Mol Microbiol: 1998, 28(1);119-30
[PubMed:9593301]
[WorldCat.org]
[DOI]
(P p)
W Liu, S Eder, F M Hulett
Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P.
J Bacteriol: 1998, 180(3);753-8
[PubMed:9457886]
[WorldCat.org]
[DOI]
(P p)
W Liu, F M Hulett
Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter.
J Bacteriol: 1997, 179(20);6302-10
[PubMed:9335276]
[WorldCat.org]
[DOI]
(P p)
Y Qi, Y Kobayashi, F M Hulett
The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon.
J Bacteriol: 1997, 179(8);2534-9
[PubMed:9098050]
[WorldCat.org]
[DOI]
(P p)
Other original publications