Difference between revisions of "EpsL"

From SubtiWiki
Jump to: navigation, search
(Expression and regulation)
Line 114: Line 114:
 
** induction by sequestration of [[SinR]] by [[SinI]] or [[SlrA]] {{PubMed|15661000,19788541}}
 
** induction by sequestration of [[SinR]] by [[SinI]] or [[SlrA]] {{PubMed|15661000,19788541}}
 
** the ''[[epsA]]-[[epsB]]-[[epsC]]-[[epsD]]-[[epsE]]-[[epsF]]-[[epsG]]-[[epsH]]-[[epsI]]-[[epsJ]]-[[epsK]]-[[epsL]]-[[epsM]]-[[epsN]]-[[epsO]]'' operon is not expressed in a ''[[ymdB]]'' mutant {{PubMed|21856853}}  
 
** the ''[[epsA]]-[[epsB]]-[[epsC]]-[[epsD]]-[[epsE]]-[[epsF]]-[[epsG]]-[[epsH]]-[[epsI]]-[[epsJ]]-[[epsK]]-[[epsL]]-[[epsM]]-[[epsN]]-[[epsO]]'' operon is not expressed in a ''[[ymdB]]'' mutant {{PubMed|21856853}}  
** the amount of the mRNA is substantially decreased upon depletion of [[Rny|RNase Y]] {{PubMed|21815947}}
+
** the amount of the mRNA is substantially decreased upon depletion of [[Rny|RNase Y]] (this is likely due to the increased stability of the ''[[sinR]]'' mRNA) {{PubMed|21815947}}
** the [[EAR riboswitch]] (eps-associated [[RNA switch]]) located between'' [[epsB]]'' and ''[[epsC]]'' mediates  processive antitermination and allows expression of the long eps operon {{PubMed|20374491}}  
+
** the [[EAR riboswitch]] (eps-associated [[RNA switch]]) located between'' [[epsB]]'' and ''[[epsC]]'' mediates  processive antitermination and allows expression of the long eps operon {{PubMed|20374491}}
  
 
=Biological materials =
 
=Biological materials =

Revision as of 14:10, 20 November 2011

  • Description: similar to UDP-galactose phosphate transferase, extracellular polysaccharide synthesis

Gene name epsL
Synonyms yvfC
Essential no
Product unknown
Function biofilm formation
Regulation of this protein in SubtiPathways:
Biofilm
MW, pI 22 kDa, 9.973
Gene length, protein length 606 bp, 202 aa
Immediate neighbours epsM, epsK
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
YvfC context.gif
This image was kindly provided by SubtiList







Categories containing this gene/protein

biofilm formation, membrane proteins

This gene is a member of the following regulons

AbrB regulon, EAR riboswitch, SinR regulon

The gene

Basic information

  • Locus tag: BSU34250

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
  • Protein family: bacterial sugar transferase family (according to Swiss-Prot)
  • Paralogous protein(s): TuaA

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity:

Database entries

  • Structure:
  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:
  • Antibody:

Labs working on this gene/protein

Richard Losick, Harvard Univ., Cambridge, USA homepage

Your additional remarks

References

Reviews

Original publications

The EAR RNA switch

Irnov Irnov, Wade C Winkler
A regulatory RNA required for antitermination of biofilm and capsular polysaccharide operons in Bacillales.
Mol Microbiol: 2010, 76(3);559-75
[PubMed:20374491] [WorldCat.org] [DOI] (I p)

Zasha Weinberg, Joy X Wang, Jarrod Bogue, Jingying Yang, Keith Corbino, Ryan H Moy, Ronald R Breaker
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes.
Genome Biol: 2010, 11(3);R31
[PubMed:20230605] [WorldCat.org] [DOI] (I p)

Other original publications

Additional publications: PubMed

Lehnik-Habrink M, Schaffer M, Mäder U, Diethmaier C, Herzberg C, Stülke J  
RNA processing in Bacillus subtilis: identification of targets of the essential RNase Y. 
Mol Microbiol. 2011 81(6): 1459-1473. 
PubMed:21815947
Diethmaier C, Pietack N, Gunka K, Wrede C, Lehnik-Habrink M, Herzberg C, Hübner S, Stülke J  
A Novel Factor Controlling Bistability in Bacillus subtilis: The YmdB Protein Affects
Flagellin Expression and Biofilm Formation. 
J Bacteriol.: 2011, 193(21):5997-6007. 
PubMed:21856853