Difference between revisions of "RbsA"
(→Extended information on the protein) |
|||
Line 50: | Line 50: | ||
+ | |||
+ | = Categories containing this gene/protein = | ||
+ | {{SubtiWiki category|[[ABC transporters]]}}, | ||
+ | {{SubtiWiki category|[[utilization of specific carbon sources]]}}, | ||
+ | {{SubtiWiki category|[[membrane proteins]]}} | ||
=The protein= | =The protein= | ||
Revision as of 19:14, 30 November 2010
- Description: ribose ABC transporter (ATP-binding protein)
Gene name | rbsA |
Synonyms | |
Essential | no |
Product | ribose ABC transporter (ATP-binding protein) |
Function | ribose uptake |
Metabolic function and regulation of this protein in SubtiPathways: Sugar catabolism | |
MW, pI | 54 kDa, 6.179 |
Gene length, protein length | 1479 bp, 493 aa |
Immediate neighbours | rbsD, rbsC |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag: BSU35940
Phenotypes of a mutant
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
Categories containing this gene/protein
ABC transporters, utilization of specific carbon sources, membrane proteins
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: ATP + H2O + monosaccharide(Out) = ADP + phosphate + monosaccharide(In) (according to Swiss-Prot)
- Protein family:
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- Modification:
- Cofactor(s):
- Effectors of protein activity:
Database entries
- Structure:
- UniProt: P36947
- KEGG entry: [3]
- E.C. number: 3.6.3.17
Additional information
Expression and regulation
- Regulation:
- Additional information:
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
Your additional remarks
References
Le Thi Tam, Christine Eymann, Dirk Albrecht, Rabea Sietmann, Frieder Schauer, Michael Hecker, Haike Antelmann
Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis.
Environ Microbiol: 2006, 8(8);1408-27
[PubMed:16872404]
[WorldCat.org]
[DOI]
(P p)
Y Quentin, G Fichant, F Denizot
Inventory, assembly and analysis of Bacillus subtilis ABC transport systems.
J Mol Biol: 1999, 287(3);467-84
[PubMed:10092453]
[WorldCat.org]
[DOI]
(P p)
M A Strauch
AbrB modulates expression and catabolite repression of a Bacillus subtilis ribose transport operon.
J Bacteriol: 1995, 177(23);6727-31
[PubMed:7592460]
[WorldCat.org]
[DOI]
(P p)
K Woodson, K M Devine
Analysis of a ribose transport operon from Bacillus subtilis.
Microbiology (Reading): 1994, 140 ( Pt 8);1829-38
[PubMed:7921236]
[WorldCat.org]
[DOI]
(P p)
M O'Reilly, K Woodson, B C Dowds, K M Devine
The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A.
Mol Microbiol: 1994, 11(1);87-98
[PubMed:7511775]
[WorldCat.org]
[DOI]
(P p)