Metabolism
B. subtilis is a chemoheterotrophic organism. It uses glucose and ammonium/glutamine as preferred sources of carbon and nitrogen, respectively. The bacteria can grow on a minimal medium. It produces all cofactors.
A suite of models of B. subtilis metabolism can by found in SubtiPathways.
Contents
Metabolic categories
2. Metabolism
- 2.1. Electron transport and ATP synthesis
- 2.1.1. Regulators of electron transport
- 2.1.2. Respiration
- 2.1.2.1. Terminal oxidases
- 2.1.2.2. Anaerobic respiration
- 2.1.2.3. Respiration/ other
- 2.1.3. Electron transport/ other
- 2.1.4. ATP synthesis
- 2.2. Carbon metabolism
- 2.2.1. Carbon core metabolism
- 2.2.1.1. Glycolysis
- 2.2.1.2. Gluconeogenesis
- 2.2.1.3. Pentose phosphate pathway
- 2.2.1.4. TCA cycle
- 2.2.1.5. Overflow metabolism
- 2.2.2. Utilization of specific carbon sources
- 2.2.2.1. Utilization of organic acids
- 2.2.2.2. Utilization of acetoin
- 2.2.2.3. Utilization of glycerol/ glycerol 3-phosphate
- 2.2.2.4. Utilization of ribose
- 2.2.2.5. Utilization of xylan/ xylose
- 2.2.2.6. Utilization of arabinan/ arabinose/ arabitol
- 2.2.2.7. Utilization of fructose
- 2.2.2.8. Utilization of galactose
- 2.2.2.9. Utilization of mannose
- 2.2.2.10. Utilization of mannitol
- 2.2.2.11. Utilization of glucitol
- 2.2.2.12. Utilization of rhamnose
- 2.2.2.13. Utilization of gluconate
- 2.2.2.14. Utilization of glucarate/ galactarate
- 2.2.2.15. Utilization of hexuronate
- 2.2.2.16. Utilization of inositol
- 2.2.2.17. Utilization of amino sugars
- 2.2.2.18. Utilization of beta-glucosides
- 2.2.2.19. Utilization of sucrose
- 2.2.2.20. Utilization of trehalose
- 2.2.2.21. Utilization of melibiose
- 2.2.2.22. Utilization of maltose
- 2.2.2.23. Utilization of starch/ maltodextrin
- 2.2.2.24. Utilization of glucomannan
- 2.2.2.25. Utilization of pectin
- 2.2.2.26. Utilization of other polymeric carbohydrates
- 2.2.1. Carbon core metabolism
- 2.3. Amino acid/ nitrogen metabolism
- 2.3.1. Biosynthesis/ acquisition of amino acids
- 2.3.1.1. Biosynthesis/ acquisition of glutamate/ glutamine/ ammonium assimilation
- 2.3.1.2. Biosynthesis/ acquisition of proline
- 2.3.1.3. Biosynthesis/ acquisition of arginine
- 2.3.1.4. Biosynthesis/ acquisition of aspartate/ asparagine
- 2.3.1.5. Biosynthesis/ acquisition of lysine/ threonine
- 2.3.1.6. Biosynthesis/ acquisition of serine/ glycine/ alanine
- 2.3.1.7. Biosynthesis/ acquisition of cysteine
- 2.3.1.8. Biosynthesis/ acquisition of methionine/ S-adenosylmethionine
- 2.3.1.9. Biosynthesis/ acquisition of branched-chain amino acids
- 2.3.1.10. Biosynthesis/ acquisition of aromatic amino acids
- 2.3.1.11. Biosynthesis/ acquisition of histidine
- 2.3.2. Utilization of amino acids
- 2.3.2.1. Utilization of glutamine/ glutamate
- 2.3.2.2. Utilization of proline
- 2.3.2.3. Utilization of arginine/ ornithine
- 2.3.2.4. Utilization of histidine
- 2.3.2.5. Utilization of asparagine/ aspartate
- 2.3.2.6. Utilization of alanine/ serine
- 2.3.2.7. Utilization of threonine/ glycine
- 2.3.2.8. Utilization of branched-chain amino acids
- 2.3.2.9. Utilization of gamma-amino butyric acid
- 2.3.3. Utilization of nitrogen sources other than amino acids
- 2.3.3.1. Utilization of nitrate/ nitrite
- 2.3.3.2. Utilization of urea
- 2.3.3.3. Utilization of amino sugars
- 2.3.3.4. Utilization of peptides
- 2.3.3.5. Utilization of proteins
- 2.3.4. Putative amino acid transporter
- 2.3.1. Biosynthesis/ acquisition of amino acids
- 2.4. Lipid metabolism
- 2.4.1. Utilization of lipids
- 2.4.1.1. Utilization of phospholipids
- 2.4.1.2. Utilization of fatty acids
- 2.4.1.3. Utilization of lipids/ other
- 2.4.2. Biosynthesis of lipids
- 2.4.2.1. Biosynthesis of fatty acids
- 2.4.2.2. Biosynthesis of phospholipids
- 2.4.2.3. Biosynthesis of isoprenoids
- 2.4.3. Lipid metabolism/ other
- 2.4.1. Utilization of lipids
- 2.5. Nucleotide metabolism
- 2.5.1. Utilization of nucleotides
- 2.5.2. Biosynthesis/ acquisition of nucleotides
- 2.5.2.1. Biosynthesis/ acquisition of purine nucleotides
- 2.5.2.2. Purine salvage and interconversion
- 2.5.2.3. Biosynthesis/ acquisition of pyrimidine nucleotides
- 2.5.2.4. Biosynthesis/ acquisition of nucleotides/ other
- 2.5.3. Metabolism of signalling nucleotides
- 2.5.4. Nucleotide metabolism/ other
- 2.6. Additional metabolic pathways
- 2.6.1. Biosynthesis of cell wall components
- 2.6.1.1. Biosynthesis of peptidoglycan
- 2.6.1.2. Biosynthesis of lipoteichoic acid
- 2.6.1.3. Biosynthesis of teichoic acid
- 2.6.1.4. Biosynthesis of teichuronic acid
- 2.6.2. Biosynthesis of cofactors
- 2.6.2.1. Biosynthesis/ acquisition of biotin
- 2.6.2.2. Biosynthesis/ acquisition of riboflavin/ FAD
- 2.6.2.3. Biosynthesis/ acquisition of thiamine
- 2.6.2.4. Biosynthesis of coenzyme A
- 2.6.2.5. Biosynthesis of folate
- 2.6.2.6. Biosynthesis of heme/ siroheme
- 2.6.2.7. Biosynthesis of lipoic acid
- 2.6.2.8. Biosynthesis of menaquinone
- 2.6.2.9. Biosynthesis of molybdopterin
- 2.6.2.10. Biosynthesis of NAD(P)
- 2.6.2.11. Biosynthesis of pyridoxal phosphate
- 2.6.3. Phosphate metabolism
- 2.6.4. Sulfur metabolism
- 2.6.5. Iron metabolism
- 2.6.5.1. Acquisition of iron
- 2.6.5.2. Biosynthesis of iron-sulfur clusters
- 2.6.6. Miscellaneous metabolic pathways
- 2.6.6.1. Biosynthesis of antibacterial compounds
- 2.6.6.2. Biosynthesis of bacillithiol
- 2.6.6.3. Biosynthesis of dipicolinate
- 2.6.6.4. Biosynthesis of glycine betaine
- 2.6.6.5. Biosynthesis of glycogen
- 2.6.6.6. Metabolism of polyamines
- 2.6.1. Biosynthesis of cell wall components
Models of metabolism
Metabolic flux analyses
Roelco J Kleijn, Joerg M Buescher, Ludovic Le Chat, Matthieu Jules, Stephane Aymerich, Uwe Sauer
Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis.
J Biol Chem: 2010, 285(3);1587-96
[PubMed:19917605]
[WorldCat.org]
[DOI]
(I p)
Minimal genome projects
Yusuke Azuma, Motonori Ota
An evaluation of minimal cellular functions to sustain a bacterial cell.
BMC Syst Biol: 2009, 3;111
[PubMed:19943949]
[WorldCat.org]
[DOI]
(I e)
Reviews
Yasutaro Fujita
Carbon catabolite control of the metabolic network in Bacillus subtilis.
Biosci Biotechnol Biochem: 2009, 73(2);245-59
[PubMed:19202299]
[WorldCat.org]
[DOI]
(I p)
Abraham L Sonenshein
Control of key metabolic intersections in Bacillus subtilis.
Nat Rev Microbiol: 2007, 5(12);917-27
[PubMed:17982469]
[WorldCat.org]
[DOI]
(I p)
Yasutaro Fujita, Hiroshi Matsuoka, Kazutake Hirooka
Regulation of fatty acid metabolism in bacteria.
Mol Microbiol: 2007, 66(4);829-39
[PubMed:17919287]
[WorldCat.org]
[DOI]
(P p)
J Stülke, W Hillen
Regulation of carbon catabolism in Bacillus species.
Annu Rev Microbiol: 2000, 54;849-80
[PubMed:11018147]
[WorldCat.org]
[DOI]
(P p)
Relevant papers on other organisms