MreB

From SubtiWiki
Revision as of 10:14, 15 January 2015 by Jstuelk (talk | contribs) (Localization)
Jump to: navigation, search
  • Description: cell shape-determining protein, forms filaments, the polymers control/restrict the mobility of the cell wall elongation enzyme complex, required for LytE activity

Gene name mreB
Synonyms divIVB
Essential yes PubMed
Product cell shape-determining protein
Function cell shape determination
Gene expression levels in SubtiExpress: mreB
Interactions involving this protein in SubtInteract: MreB
MW, pI 35 kDa, 4.901
Gene length, protein length 1011 bp, 337 aa
Immediate neighbours mreC, radC
Sequences Protein DNA DNA_with_flanks
Genetic context
MreB context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
MreB expression.png















Categories containing this gene/protein

cell shape, membrane dynamics, cell envelope stress proteins (controlled by SigM, V, W, X, Y), essential genes, membrane proteins

This gene is a member of the following regulons

SigM regulon

The gene

Basic information

  • Locus tag: BSU28030

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
    • forms straight filaments in a heterologous system PubMed
    • polymerizes in the presence of millimolar divalent cations, binds and hydrolyzes GTP and ATP PubMed
    • involved in the organization of ϕ29 DNA replication machinery in peripheral helix-like structures PubMed
    • required for LytE activity PubMed
  • Protein family: ftsA/mreB family (according to Swiss-Prot)

Extended information on the protein

  • Kinetic information:
  • Modification:
  • Effectors of protein activity:
  • Localization:
    • during logarithmic growth, MreB forms discrete patches thst move processively along peripheral tracks perpendicular to the cell axis PubMed
    • forms transverse bands as cells enter the stationary phase PubMed
    • forms antiparallel double filaments PubMed
    • close to the inner surface of the cytoplasmic membrane PubMed
    • reports on helical structures formed by MreB PubMed seem to be misinterpretation of data PubMed
    • normal localization depends on the presence of glucolipids, MreB forms irregular clusters in an ugtP mutant PubMed

Database entries

  • Structure: 1JCE (from Thermotoga maritima) PubMed
  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Regulation:
  • Regulatory mechanism:
  • Additional information:
    • number of protein molecules per cell (minimal medium with glucose and ammonium): 1045 PubMed
    • number of protein molecules per cell (complex medium with amino acids, without glucose): 2367 PubMed

Biological materials

  • Mutant:
  • Expression vector:
  • lacZ fusion:
  • GFP fusion:

Labs working on this gene/protein

Jeff Errington, Newcastle University, UK homepage

Peter Graumann, Freiburg University, Germany homepage

Your additional remarks

References

Reviews


Localization

Jeff Errington
Bacterial morphogenesis and the enigmatic MreB helix.
Nat Rev Microbiol: 2015, 13(4);241-8
[PubMed:25578957] [WorldCat.org] [DOI] (I p)

Kathrin Schirner, Ye-Jin Eun, Mike Dion, Yun Luo, John D Helmann, Ethan C Garner, Suzanne Walker
Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB.
Nat Chem Biol: 2015, 11(1);38-45
[PubMed:25402772] [WorldCat.org] [DOI] (I p)

Fusinita van den Ent, Thierry Izoré, Tanmay Am Bharat, Christopher M Johnson, Jan Löwe
Bacterial actin MreB forms antiparallel double filaments.
Elife: 2014, 3;e02634
[PubMed:24843005] [WorldCat.org] [DOI] (I e)

Philipp V Olshausen, Hervé Joël Defeu Soufo, Kai Wicker, Rainer Heintzmann, Peter L Graumann, Alexander Rohrbach
Superresolution imaging of dynamic MreB filaments in B. subtilis--a multiple-motor-driven transport?
Biophys J: 2013, 105(5);1171-81
[PubMed:24010660] [WorldCat.org] [DOI] (I p)

Christian Reimold, Herve Joel Defeu Soufo, Felix Dempwolff, Peter L Graumann
Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology.
Mol Biol Cell: 2013, 24(15);2340-9
[PubMed:23783036] [WorldCat.org] [DOI] (I p)

Felix Dempwolff, Christian Reimold, Michael Reth, Peter L Graumann
Bacillus subtilis MreB orthologs self-organize into filamentous structures underneath the cell membrane in a heterologous cell system.
PLoS One: 2011, 6(11);e27035
[PubMed:22069484] [WorldCat.org] [DOI] (I p)

Ethan C Garner, Remi Bernard, Wenqin Wang, Xiaowei Zhuang, David Z Rudner, Tim Mitchison
Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis.
Science: 2011, 333(6039);222-5
[PubMed:21636745] [WorldCat.org] [DOI] (I p)

Julia Domínguez-Escobar, Arnaud Chastanet, Alvaro H Crevenna, Vincent Fromion, Roland Wedlich-Söldner, Rut Carballido-López
Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.
Science: 2011, 333(6039);225-8
[PubMed:21636744] [WorldCat.org] [DOI] (I p)

Henrik Strahl, Leendert W Hamoen
Membrane potential is important for bacterial cell division.
Proc Natl Acad Sci U S A: 2010, 107(27);12281-6
[PubMed:20566861] [WorldCat.org] [DOI] (I p)

Hervé Joël Defeu Soufo, Peter L Graumann
Dynamic localization and interaction with other Bacillus subtilis actin-like proteins are important for the function of MreB.
Mol Microbiol: 2006, 62(5);1340-56
[PubMed:17064365] [WorldCat.org] [DOI] (P p)


Other original publications