SlrR
- Description: transcriptional activator of competence development and sporulation genes, represses SigD-dependent flagellar genes, antagonist of SlrA and SinR, has LexA-like autocleavage activity
Gene name | slrR |
Synonyms | yveJ, slr |
Essential | no |
Product | transcription regulator, SlrA antagonist |
Function | regulation of initiation of biofilm formation and of autolysis |
Interactions involving this protein in SubtInteract: SlrR | |
Regulation of this protein in SubtiPathways: Biofilm | |
MW, pI | 17 kDa, 9.63 |
Gene length, protein length | 456 bp, 152 aa |
Immediate neighbours | epsA, pnbA |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
Categories containing this gene/protein
transcription factors and their control, transition state regulators, biofilm formation
This gene is a member of the following regulons
Abh regulon, AbrB regulon, SinR regulon
The SlrR regulon:
The gene
Basic information
- Locus tag: BSU34380
Phenotypes of a mutant
Database entries
- DBTBS entry: no entry
- SubtiList entry: [1]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity:
- SlrR binds to and inhibits the activity of SlrA, SlrA indirectly stimulates the synthesis of SlrR by interacting with SinR. SlrR can bind to SinR and SinR directly represses the transcription of SlrR. SlrR indirectly derepresses its own gene. The heterocomplex of SlrR-SinR is a repressor of autolysin and motility genes and inhibits the repressor function of SinR. PubMed
- repression of transcription of lytA-lytB-lytC and lytF PubMed
- autocleavage PubMed
- Protein family:
- Paralogous protein(s): SinR
Extended information on the protein
- Kinetic information:
- Domains:
- Cofactor(s):
- Effectors of protein activity: interaction with SinR triggers binding of SlrR to the promoters of lytA-lytB-lytC and lytF, resulting in their repression PubMed
Database entries
- Structure:
- UniProt: P71049
- KEGG entry: [2]
- E.C. number:
Additional information
Expression and regulation
- Operon:
- Regulation:
- Regulatory mechanism:
- Additional information:
Biological materials
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system: B. pertussis adenylate cyclase-based bacterial two hybrid system (BACTH), available in Stülke lab
- Antibody:
Labs working on this gene/protein
Your additional remarks
References
Reviews
Patrick Piggot
Epigenetic switching: bacteria hedge bets about staying or moving.
Curr Biol: 2010, 20(11);R480-2
[PubMed:20541494]
[WorldCat.org]
[DOI]
(I p)
Original publications
Additional publications: PubMed
Diethmaier C, Pietack N, Gunka K, Wrede C, Lehnik-Habrink M, Herzberg C, Hübner S, Stülke J A Novel Factor Controlling Bistability in Bacillus subtilis: The YmdB Protein Affects Flagellin Expression and Biofilm Formation. J Bacteriol.: 2011, 193(21):5997-6007. PubMed:21856853
Yunrong Chai, Roberto Kolter, Richard Losick
Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability.
Mol Microbiol: 2010, 78(1);218-29
[PubMed:20923420]
[WorldCat.org]
[DOI]
(I p)
Yunrong Chai, Thomas Norman, Roberto Kolter, Richard Losick
An epigenetic switch governing daughter cell separation in Bacillus subtilis.
Genes Dev: 2010, 24(8);754-65
[PubMed:20351052]
[WorldCat.org]
[DOI]
(I p)
Yunrong Chai, Roberto Kolter, Richard Losick
Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis.
Mol Microbiol: 2009, 74(4);876-87
[PubMed:19788541]
[WorldCat.org]
[DOI]
(I p)
Ewan J Murray, Mark A Strauch, Nicola R Stanley-Wall
SigmaX is involved in controlling Bacillus subtilis biofilm architecture through the AbrB homologue Abh.
J Bacteriol: 2009, 191(22);6822-32
[PubMed:19767430]
[WorldCat.org]
[DOI]
(I p)
Kazuo Kobayashi
SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis.
Mol Microbiol: 2008, 69(6);1399-410
[PubMed:18647168]
[WorldCat.org]
[DOI]
(I p)
Frances Chu, Daniel B Kearns, Anna McLoon, Yunrong Chai, Roberto Kolter, Richard Losick
A novel regulatory protein governing biofilm formation in Bacillus subtilis.
Mol Microbiol: 2008, 68(5);1117-27
[PubMed:18430133]
[WorldCat.org]
[DOI]
(I p)