Difference between revisions of "CcpA"
(→References) |
|||
Line 171: | Line 171: | ||
==Global analyses (proteome, transcriptome, ChIP-chip)== | ==Global analyses (proteome, transcriptome, ChIP-chip)== | ||
− | <pubmed>12850135 ,11251851,10559165, 11160890,17183215 22383848 | + | '''Additional publications:''' {{PubMed|22900538}} |
+ | <pubmed>12850135 ,11251851,10559165, 11160890,17183215 22383848 </pubmed> | ||
==Repression of target genes by CcpA== | ==Repression of target genes by CcpA== |
Revision as of 16:22, 30 October 2012
- Description: Carbon catabolite control protein A, involved in glucose regulation of many genes; represses catabolic genes and activates genes involved in excretion of excess carbon
Gene name | ccpA |
Synonyms | graR, alsA, amyR |
Essential | no |
Product | transcriptional regulator (LacI family) |
Function | mediates carbon catabolite repression (CCR) |
Gene expression levels in SubtiExpress: ccpA | |
Interactions involving this protein in SubtInteract: CcpA | |
Metabolic function and regulation of this protein in SubtiPathways: Nucleoside catabolism, Nucleotides (regulation), Ile, Leu, Val, His, Coenzyme A, Central C-metabolism | |
MW, pI | 36,8 kDa, 5.06 |
Gene length, protein length | 1002 bp, 334 amino acids |
Immediate neighbours | motP, aroA |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
| |
Expression at a glance PubMed |
Contents
- 1 Categories containing this gene/protein
- 2 This gene is a member of the following regulons
- 3 The CcpA regulon
- 4 The gene
- 5 The protein
- 6 Expression and regulation
- 7 Biological materials
- 8 Labs working on this gene/protein
- 9 Your additional remarks
- 10 References
- 10.1 Reviews
- 10.2 General and physiological studies
- 10.3 Global analyses (proteome, transcriptome, ChIP-chip)
- 10.4 Repression of target genes by CcpA
- 10.5 Positive regulation of gene expression by CcpA
- 10.6 Control of CcpA activity
- 10.7 CcpA-DNA interaction
- 10.8 Functional analysis of CcpA
- 10.9 Structural analyses
Categories containing this gene/protein
- see also: glutamate metabolism
This gene is a member of the following regulons
The CcpA regulon
The gene
Basic information
- Locus tag: BSU29740
Phenotypes of a mutant
Loss of carbon catabolite repression. Loss of PTS-dependent sugar transport due to excessive phosphorylation of HPr by HprK. The mutant is unable to grow on a minimal medium with glucose and ammonium as the only sources of carbon and nitrogen, respectively.
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: transcriptional regulator of carbon catabolite repression (CCR)
- Protein family: LacI family
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- HTH LacI-type Domain (1 – 58)
- DNA binding Domain (6 – 25)
- Modification:
- Effectors of protein activity:glucose-6-phosphate, fructose-1,6-bisphosphate Pubmed
Database entries
- Structure:
- 2JCG (Apoprotein from Bacillus megaterium)
- CcpA-Crh-DNA-complex NCBI
- complex with P-Ser-HPr and sulphate ions NCBI
- 3OQM (complex of B. subtilis CcpA with P-Ser-HPr and the ackA operator site)
- 3OQN (complex of B. subtilis CcpA with P-Ser-HPr and the gntR operator site)
- 3OQO (complex of B. subtilis CcpA with P-Ser-HPr and a optimal synthetic operator site)
- UniProt: P25144
- KEGG entry: [3]
Additional information
Expression and regulation
- Sigma factor:
- Regulation: constitutively expressed PubMed
- Additional information: there are about 3.000 molecules of CcpA per cell PubMed, this corresponds to a concentration of 3 myM (according to PubMed)
Biological materials
- Mutant:
- QB5407 (spc), available in Jörg Stülke's lab
- GP302 (erm), available in Jörg Stülke's lab
- GP300 (an in frame deletion of ccpA), available in Jörg Stülke's lab
- WH649 (aphA3), available in Gerald Seidel's lab
- Expression vector:
- pGP643 (N-terminal Strep-tag, purification from B. subtilis, for SPINE, in pGP380), available in Jörg Stülke's lab
- pWH940 (C-terminal Strep-tag, purification from B. subtilis, for SPINE, in pGP382), available in Gerald Seidel's lab
- Strep-tag construct: GP1303 ccpA-Strep (spc) in native locus, based on (pGP1389), available in Jörg Stülke's lab
- lacZ fusion:
- GFP fusion:
- Antibody: available in Gerald Seidel's and in Jörg Stülke's lab
Labs working on this gene/protein
- Gerald Seidel, Erlangen University, Germany Homepage
- Richard Brennan, Houston, Texas, USA Homepage
- Milton H. Saier, University of California at San Diego, USA Homepage
- Yasutaro Fujita, University of Fukuyama, Japan
- Jörg Stülke, University of Göttingen, Germany Homepage
- Oscar Kuipers, University of Groningen, The Netherlands Homepage
Your additional remarks
References
Reviews
General and physiological studies
Additional publications: PubMed
Global analyses (proteome, transcriptome, ChIP-chip)
Additional publications: PubMed
Repression of target genes by CcpA
Additional publications: PubMed
Positive regulation of gene expression by CcpA
Control of CcpA activity
Lwin Mar Aung-Hilbrich, Gerald Seidel, Andrea Wagner, Wolfgang Hillen
Quantification of the influence of HPrSer46P on CcpA-cre interaction.
J Mol Biol: 2002, 319(1);77-85
[PubMed:12051938]
[WorldCat.org]
[DOI]
(P p)
A Galinier, J Deutscher, I Martin-Verstraete
Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon.
J Mol Biol: 1999, 286(2);307-14
[PubMed:9973552]
[WorldCat.org]
[DOI]
(P p)
J H Kim, M I Voskuil, G H Chambliss
NADP, corepressor for the Bacillus catabolite control protein CcpA.
Proc Natl Acad Sci U S A: 1998, 95(16);9590-5
[PubMed:9689125]
[WorldCat.org]
[DOI]
(P p)
B E Jones, V Dossonnet, E Küster, W Hillen, J Deutscher, R E Klevit
Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr.
J Biol Chem: 1997, 272(42);26530-5
[PubMed:9334231]
[WorldCat.org]
[DOI]
(P p)
J Deutscher, E Küster, U Bergstedt, V Charrier, W Hillen
Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria.
Mol Microbiol: 1995, 15(6);1049-53
[PubMed:7623661]
[WorldCat.org]
[DOI]
(P p)
CcpA-DNA interaction
Functional analysis of CcpA
Structural analyses