Difference between revisions of "CcpA"
(→Categories containing this gene/protein) |
|||
Line 13: | Line 13: | ||
|- | |- | ||
|style="background:#ABCDEF;" align="center"|'''Function''' || mediates carbon catabolite repression (CCR) | |style="background:#ABCDEF;" align="center"|'''Function''' || mediates carbon catabolite repression (CCR) | ||
+ | |- | ||
+ | |colspan="2" style="background:#FAF8CC;" align="center"| '''Gene expression levels in [http://cellpublisher.gobics.de/subtiexpress/ ''Subti''Express]''': [http://cellpublisher.gobics.de/subtiexpress/bsu/BSU29740 ccpA] | ||
|- | |- | ||
|colspan="2" style="background:#FAF8CC;" align="center"| '''Interactions involving this protein in [http://cellpublisher.gobics.de/subtinteract/startpage/start/ ''Subt''Interact]''': [http://cellpublisher.gobics.de/subtinteract/interactionList/2/CcpA CcpA] | |colspan="2" style="background:#FAF8CC;" align="center"| '''Interactions involving this protein in [http://cellpublisher.gobics.de/subtinteract/startpage/start/ ''Subt''Interact]''': [http://cellpublisher.gobics.de/subtinteract/interactionList/2/CcpA CcpA] |
Revision as of 15:01, 7 August 2012
- Description: Carbon catabolite control protein A, involved in glucose regulation of many genes; represses catabolic genes and activates genes involved in excretion of excess carbon
Gene name | ccpA |
Synonyms | graR, alsA, amyR |
Essential | no |
Product | transcriptional regulator (LacI family) |
Function | mediates carbon catabolite repression (CCR) |
Gene expression levels in SubtiExpress: ccpA | |
Interactions involving this protein in SubtInteract: CcpA | |
Metabolic function and regulation of this protein in SubtiPathways: Nucleoside catabolism, Nucleotides (regulation), Ile, Leu, Val, His, Coenzyme A, Central C-metabolism | |
MW, pI | 36,8 kDa, 5.06 |
Gene length, protein length | 1002 bp, 334 amino acids |
Immediate neighbours | motP, aroA |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
| |
Expression at a glance PubMed |
Contents
- 1 Categories containing this gene/protein
- 2 This gene is a member of the following regulons
- 3 The CcpA regulon
- 4 The gene
- 5 The protein
- 6 Expression and regulation
- 7 Biological materials
- 8 Labs working on this gene/protein
- 9 Your additional remarks
- 10 References
- 10.1 Reviews
- 10.2 General and physiological studies
- 10.3 Global analyses (proteome, transcriptome, ChIP-chip)
- 10.4 Repression of target genes by CcpA
- 10.5 Positive regulation of gene expression by CcpA
- 10.6 Control of CcpA activity
- 10.7 CcpA-DNA interaction
- 10.8 Functional analysis of CcpA
- 10.9 Structural analyses
Categories containing this gene/protein
- see also: glutamate metabolism
This gene is a member of the following regulons
The CcpA regulon
The gene
Basic information
- Locus tag: BSU29740
Phenotypes of a mutant
Loss of carbon catabolite repression. Loss of PTS-dependent sugar transport due to excessive phosphorylation of HPr by HprK. The mutant is unable to grow on a minimal medium with glucose and ammonium as the only sources of carbon and nitrogen, respectively.
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: transcriptional regulator of carbon catabolite repression (CCR)
- Protein family: LacI family
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- HTH LacI-type Domain (1 – 58)
- DNA binding Domain (6 – 25)
- Modification:
- Effectors of protein activity:glucose-6-phosphate, fructose-1,6-bisphosphate Pubmed
Database entries
- Structure:
- 2JCG (Apoprotein from Bacillus megaterium)
- CcpA-Crh-DNA-complex NCBI
- complex with P-Ser-HPr and sulphate ions NCBI
- 3OQM (complex of B. subtilis CcpA with P-Ser-HPr and the ackA operator site)
- 3OQN (complex of B. subtilis CcpA with P-Ser-HPr and the gntR operator site)
- 3OQO (complex of B. subtilis CcpA with P-Ser-HPr and a optimal synthetic operator site)
- UniProt: P25144
- KEGG entry: [3]
Additional information
Expression and regulation
- Sigma factor:
- Regulation: constitutively expressed PubMed
- Additional information: there are about 3.000 molecules of CcpA per cell PubMed, this corresponds to a concentration of 3 myM (according to PubMed)
Biological materials
- Mutant: QB5407 (spc), GP302 (erm), GP300 (an in frame deletion of ccpA), available in Stülke lab; WH649 (aphA3), available in Gerald Seidel's lab
- Expression vector:
- lacZ fusion:
- GFP fusion:
Labs working on this gene/protein
- Gerald Seidel, Erlangen University, Germany Homepage
- Richard Brennan, Houston, Texas, USA Homepage
- Milton H. Saier, University of California at San Diego, USA Homepage
- Yasutaro Fujita, University of Fukuyama, Japan
- Jörg Stülke, University of Göttingen, Germany Homepage
- Oscar Kuipers, University of Groningen, The Netherlands Homepage
Your additional remarks
References
Reviews
General and physiological studies
Additional publications: PubMed
Global analyses (proteome, transcriptome, ChIP-chip)
Repression of target genes by CcpA
Additional publications: PubMed
José Manuel Inácio, Isabel de Sá-Nogueira
trans-Acting factors and cis elements involved in glucose repression of arabinan degradation in Bacillus subtilis.
J Bacteriol: 2007, 189(22);8371-6
[PubMed:17827291]
[WorldCat.org]
[DOI]
(I p)
Soo-Keun Choi, Milton H Saier
Mechanism of CcpA-mediated glucose repression of the resABCDE operon of Bacillus subtilis.
J Mol Microbiol Biotechnol: 2006, 11(1-2);104-10
[PubMed:16825793]
[WorldCat.org]
[DOI]
(P p)
Soo-Keun Choi, Milton H Saier
Regulation of pho regulon gene expression by the carbon control protein A, CcpA, in Bacillus subtilis.
J Mol Microbiol Biotechnol: 2005, 10(1);40-50
[PubMed:16491025]
[WorldCat.org]
[DOI]
(P p)
Soo-Keun Choi, Milton H Saier
Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism.
J Bacteriol: 2005, 187(19);6856-61
[PubMed:16166551]
[WorldCat.org]
[DOI]
(P p)
Boris R Belitsky, Hyun-Jin Kim, Abraham L Sonenshein
CcpA-dependent regulation of Bacillus subtilis glutamate dehydrogenase gene expression.
J Bacteriol: 2004, 186(11);3392-8
[PubMed:15150224]
[WorldCat.org]
[DOI]
(P p)
Hyun-Jin Kim, Agnes Roux, Abraham L Sonenshein
Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes.
Mol Microbiol: 2002, 45(1);179-90
[PubMed:12100558]
[WorldCat.org]
[DOI]
(P p)
Hyun-Jin Kim, Cécile Jourlin-Castelli, Sam-In Kim, Abraham L Sonenshein
Regulation of the bacillus subtilis ccpC gene by ccpA and ccpC.
Mol Microbiol: 2002, 43(2);399-410
[PubMed:11985717]
[WorldCat.org]
[DOI]
(P p)
Emmanuelle Darbon, Pascale Servant, Sandrine Poncet, Josef Deutscher
Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression.
Mol Microbiol: 2002, 43(4);1039-52
[PubMed:11929549]
[WorldCat.org]
[DOI]
(P p)
I Martin-Verstraete, J Stülke, A Klier, G Rapoport
Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
J Bacteriol: 1995, 177(23);6919-27
[PubMed:7592486]
[WorldCat.org]
[DOI]
(P p)
F J Grundy, A J Turinsky, T M Henkin
Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA.
J Bacteriol: 1994, 176(15);4527-33
[PubMed:7913927]
[WorldCat.org]
[DOI]
(P p)
Positive regulation of gene expression by CcpA
Control of CcpA activity
CcpA-DNA interaction
Functional analysis of CcpA
Structural analyses