Difference between revisions of "CcpA"

From SubtiWiki
Jump to: navigation, search
(Structural analyses)
(Categories containing this gene/protein)
Line 35: Line 35:
  
 
= [[Categories]] containing this gene/protein =
 
= [[Categories]] containing this gene/protein =
 +
{{SubtiWiki category|[[transcription factors and their control]]}},
 
{{SubtiWiki category|[[regulators of core metabolism]]}}
 
{{SubtiWiki category|[[regulators of core metabolism]]}}
  

Revision as of 09:05, 23 April 2011

  • Description: Carbon catabolite control protein A, involved in glucose regulation of many genes; represses catabolic genes and activates genes involved in excretion of excess carbon

Gene name ccpA
Synonyms graR, alsA, amyR
Essential no
Product transcriptional regulator (LacI family)
Function mediates carbon catabolite repression (CCR)
Metabolic function and regulation of this protein in SubtiPathways:
Nucleoside catabolism, Nucleotides (regulation), Ile, Leu, Val,
His, Coenzyme A, Central C-metabolism
MW, pI 36,8 kDa, 5.06
Gene length, protein length 1002 bp, 334 amino acids
Immediate neighbours motP, aroA
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
CcpA context.gif
This image was kindly provided by SubtiList




Categories containing this gene/protein

transcription factors and their control, regulators of core metabolism

This gene is a member of the following regulons

The CcpA regulon

The gene

Basic information

  • Locus tag: BSU29740

Phenotypes of a mutant

Loss of carbon catabolite repression. Loss of PTS-dependent sugar transport due to excessive phosphorylation of HPr by HprK. The mutant is unable to grow on a minimal medium with glucose and ammonium as the only sources of carbon and nitrogen, respectively.

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity: transcriptional regulator of carbon catabolite repression (CCR)
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
    • HTH lacI-type Domain (1 – 58)
    • DNA binding Domain (6 – 25)
  • Modification:
  • Cofactor(s): HPr-Ser46-P, Crh-Ser-46-P
  • Effectors of protein activity:glucose-6-phosphate, fructose-1,6-bisphosphate Pubmed
  • Localization:

Database entries

  • Structure:
    • 2JCG (Apoprotein from Bacillus megaterium)
    • CcpA-Crh-DNA-complex NCBI
    • complex with P-Ser-HPr and sulphate ions NCBI
    • 3OQM (complex of B. subtilis CcpA with P-Ser-HPr and the ackA operator site)
    • 3OQN (complex of B. subtilis CcpA with P-Ser-HPr and the gntR operator site)
    • 3OQO (complex of B. subtilis CcpA with P-Ser-HPr and a optimal synthetic operator site)
  • KEGG entry: [3]

Additional information

Expression and regulation

  • Sigma factor:
  • Regulation: constitutively expressed PubMed
  • Additional information: there are about 3.000 molecules of CcpA per cell PubMed, this corresponds to a concentration of 3 myM (according to PubMed)

Biological materials

  • Mutant: QB5407 (spc), GP302 (erm), GP300 (an in frame deletion of ccpA), available in Stülke lab; WH649 (aphA3), available in Gerald Seidel's lab
  • Expression vector:
    • pGP643 (N-terminal Strep-tag, purification from B. subtilis, for SPINE, in pGP380), available in Stülke lab
    • pWH940 (C-terminal Strep-tag, purification from B. subtilis, for SPINE, in pGP382), available in Gerald Seidel's lab
  • lacZ fusion:
  • GFP fusion:

Labs working on this gene/protein

Your additional remarks

References

Reviews

Sabine Brantl, Andreas Licht
Characterisation of Bacillus subtilis transcriptional regulators involved in metabolic processes.
Curr Protein Pept Sci: 2010, 11(4);274-91
[PubMed:20408793] [WorldCat.org] [DOI] (I p)

Yasutaro Fujita
Carbon catabolite control of the metabolic network in Bacillus subtilis.
Biosci Biotechnol Biochem: 2009, 73(2);245-59
[PubMed:19202299] [WorldCat.org] [DOI] (I p)

Boris Görke, Jörg Stülke
Carbon catabolite repression in bacteria: many ways to make the most out of nutrients.
Nat Rev Microbiol: 2008, 6(8);613-24
[PubMed:18628769] [WorldCat.org] [DOI] (I p)

Josef Deutscher
The mechanisms of carbon catabolite repression in bacteria.
Curr Opin Microbiol: 2008, 11(2);87-93
[PubMed:18359269] [WorldCat.org] [DOI] (P p)

Jessica B Warner, Juke S Lolkema
CcpA-dependent carbon catabolite repression in bacteria.
Microbiol Mol Biol Rev: 2003, 67(4);475-90
[PubMed:14665673] [WorldCat.org] [DOI] (P p)

T M Henkin
The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis.
FEMS Microbiol Lett: 1996, 135(1);9-15
[PubMed:8598282] [WorldCat.org] [DOI] (P p)


General and physiological studies

Global analyses (proteome, transcriptome)

Repression of target genes by CcpA

Additional publications: PubMed


Positive regulation of gene expression by CcpA

Control of CcpA activity

CcpA-DNA interaction

Functional analysis of CcpA

Structural analyses