Difference between revisions of "RnhC"
(→References) |
(→Original publications) |
||
Line 120: | Line 120: | ||
<pubmed>19228197 </pubmed> | <pubmed>19228197 </pubmed> | ||
==Original publications== | ==Original publications== | ||
− | <pubmed>8969504 10094689 9888800 </pubmed> | + | <pubmed>8969504 10094689 9888800 17905985 </pubmed> |
[[Category:Protein-coding genes]] | [[Category:Protein-coding genes]] |
Revision as of 20:18, 24 May 2010
- Description: RNase HIII, endoribonuclease
Gene name | rnhC |
Synonyms | ysgB |
Essential | no |
Product | Mg2+-dependent RNase HIII |
Function | endonucleolytic cleavage of RNA in RNA-DNA hybrid molecules |
MW, pI | 33 kDa, 10.07 |
Gene length, protein length | 939 bp, 313 aa |
Immediate neighbours | zapA, pheT |
Get the DNA and protein sequences (Barbe et al., 2009) | |
Genetic context This image was kindly provided by SubtiList
|
Contents
The gene
Basic information
- Locus tag: BSU28620
Phenotypes of a mutant
Database entries
- DBTBS entry: [1]
- SubtiList entry: [2]
Additional information
The protein
Basic information/ Evolution
- Catalyzed reaction/ biological activity: Endonucleolytic cleavage to 5'-phosphomonoester (according to Swiss-Prot)
- Protein family: RnhC subfamily (according to Swiss-Prot)
- Paralogous protein(s):
Extended information on the protein
- Kinetic information:
- Domains:
- Modification:
- Cofactor(s):
- Effectors of protein activity:
- Interactions:
- Localization: cytoplasm (according to Swiss-Prot)
Database entries
- Structure: 2D0B (complex with Mg2+, Geobacillus stearothermophilus , 47% identity), 2D0A (Geobacillus stearothermophilus, 47% identity)
- UniProt: P94541
- KEGG entry: [3]
- E.C. number:
Additional information
Expression and regulation
- Regulation:
- Regulatory mechanism:
- Additional information:
Biological materials
- Mutant:
- Expression vector:
- lacZ fusion:
- GFP fusion:
- two-hybrid system:
- Antibody:
Labs working on this gene/protein
Your additional remarks
References
Reviews
Takashi Tadokoro, Shigenori Kanaya
Ribonuclease H: molecular diversities, substrate binding domains, and catalytic mechanism of the prokaryotic enzymes.
FEBS J: 2009, 276(6);1482-93
[PubMed:19228197]
[WorldCat.org]
[DOI]
(I p)
Original publications