Difference between revisions of "TnrA"

From SubtiWiki
Jump to: navigation, search
(Categories containing this gene/protein)
Line 44: Line 44:
  
 
= [[Categories]] containing this gene/protein =
 
= [[Categories]] containing this gene/protein =
{{SubtiWiki category|[[biosynthesis/ acquisition of amino acids]]}},
+
{{SubtiWiki category|[[biosynthesis/ acquisition of amino acids]]}}, [[glutamate metabolism]],  
 
{{SubtiWiki category|[[transcription factors and their control]]}},
 
{{SubtiWiki category|[[transcription factors and their control]]}},
 
{{SubtiWiki category|[[regulators of core metabolism]]}}
 
{{SubtiWiki category|[[regulators of core metabolism]]}}

Revision as of 18:12, 3 June 2012

  • Description: transcriptional pleiotropic regulator invoved in global nitrogen regulation

Gene name tnrA
Synonyms scgR
Essential no
Product transcription activator/ repressor
Function regulation of nitrogen assimilation
Interactions involving this protein in SubtInteract: TnrA
Metabolic function and regulation of this protein in SubtiPathways:
Lipid synthesis, Nucleotides (regulation), Ile, Leu, Val,
Ammonium/ glutamate, Central C-metabolism, Cell wall,
Coenzyme A, Phosphorelay, Alternative nitrogen sources
MW, pI 12 kDa, 10.235
Gene length, protein length 330 bp, 110 aa
Immediate neighbours mgtE, ykzB
Get the DNA and protein sequences
(Barbe et al., 2009)
Genetic context
TnrA context.gif
This image was kindly provided by SubtiList
Expression at a glance   PubMed
TnrA expression.png































Categories containing this gene/protein

biosynthesis/ acquisition of amino acids, glutamate metabolism, transcription factors and their control, regulators of core metabolism

This gene is a member of the following regulons

GlnR regulon, TnrA regulon

The TnrA regulon

The gene

Basic information

  • Locus tag: BSU13310

Phenotypes of a mutant

Database entries

  • DBTBS entry: [1]
  • SubtiList entry: [2]

Additional information

The protein

Basic information/ Evolution

  • Catalyzed reaction/ biological activity:
  • Protein family:
  • Paralogous protein(s):

Extended information on the protein

  • Kinetic information:
  • Domains:
  • Modification:
  • Cofactor(s):
  • Effectors of protein activity: feedback-inhibited GlnA prevents TnrA from DNA binding

Database entries

  • Structure:
  • KEGG entry: [3]
  • E.C. number:

Additional information

Expression and regulation

  • Operon: tnrA (according to DBTBS)
  • Sigma factor:
  • Regulation:
    • expression is autocativated (TnrA) and repressed by GlnR PubMed
    • expressed in the absence of good nitrogen sources (glutamine or ammonium) (TnrA) PubMed
  • Regulatory mechanism:
  • Additional information:

Biological materials

  • Mutant: GP252 (in frame deletion), available in the Stülke lab
  • Expression vector:
    • for expression, purification in E. coli with N-terminal His-tag, in pWH844: pGP171 available in Stülke lab
    • pGP229 (N-terminal Strep-tag, for SPINE, expression in B. subtilis, in pGP380), available in Stülke lab
  • lacZ fusion:
  • GFP fusion:
  • two-hybrid system:

Labs working on this gene/protein

Susan Fisher, Boston, USA homepage

Your additional remarks

References

Reviews

The TnrA regulon

Control of TnrA activity by the trigger enzyme GlnA

Susan H Fisher, Lewis V Wray
Novel trans-Acting Bacillus subtilis glnA mutations that derepress glnRA expression.
J Bacteriol: 2009, 191(8);2485-92
[PubMed:19233925] [WorldCat.org] [DOI] (I p)

Lewis V Wray, Susan H Fisher
Functional analysis of the carboxy-terminal region of Bacillus subtilis TnrA, a MerR family protein.
J Bacteriol: 2007, 189(1);20-7
[PubMed:17085574] [WorldCat.org] [DOI] (P p)

Susan H Fisher, Lewis V Wray
Feedback-resistant mutations in Bacillus subtilis glutamine synthetase are clustered in the active site.
J Bacteriol: 2006, 188(16);5966-74
[PubMed:16885465] [WorldCat.org] [DOI] (P p)

Susan H Fisher, Jaclyn L Brandenburg, Lewis V Wray
Mutations in Bacillus subtilis glutamine synthetase that block its interaction with transcription factor TnrA.
Mol Microbiol: 2002, 45(3);627-35
[PubMed:12139611] [WorldCat.org] [DOI] (P p)

L V Wray, J M Zalieckas, S H Fisher
Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA.
Cell: 2001, 107(4);427-35
[PubMed:11719184] [WorldCat.org] [DOI] (P p)

Other original publications

Additional publications: PubMed