Difference between revisions of "PTS"
(→Proteins closely related to the PTS) |
|||
Line 12: | Line 12: | ||
==Proteins closely related to the PTS== | ==Proteins closely related to the PTS== | ||
− | * [[Crh]]: [[ptsH|HPr]]-like protein with exculsively regulatory functions (His-15 is not conserved* [[HprK]]: [[ptsH|HPr]]-kinase, key factor for carbon catabolite repression | + | * [[Crh]]: [[ptsH|HPr]]-like protein with exculsively regulatory functions (His-15 is not conserved |
+ | * [[HprK]]: [[ptsH|HPr]]-kinase, key factor for carbon catabolite repression | ||
==Non-PTS proteins controlled by PTS-dependent phosphorylation== | ==Non-PTS proteins controlled by PTS-dependent phosphorylation== |
Revision as of 19:56, 6 September 2009
Contents
The PEP:Sugar Phosphotransferase System
The PTS is a sugar transport system that couples the transport of a sugar to its phosphorylation. The phosphate group is derived from phosphoenolpyruvate (PEP) and transferred via the general PTS proteins Enzyme I (EI) and HPr to the substrate-specific Enzymes II (EII) to the incoming sugars.
In addition to its role in sugar transport, the PTS is also involved in the regulation of carbon metabolism.
General PTS proteins
Sugar specific PTS proteins
- Crh: HPr-like protein with exculsively regulatory functions (His-15 is not conserved
- HprK: HPr-kinase, key factor for carbon catabolite repression
Non-PTS proteins controlled by PTS-dependent phosphorylation
Related Lists
Relevant Reviews
Josef Deutscher, Christof Francke, Pieter W Postma
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
Microbiol Mol Biol Rev: 2006, 70(4);939-1031
[PubMed:17158705]
[WorldCat.org]
[DOI]
(P p)
Jonathan Reizer, Steffi Bachem, Aiala Reizer, Maryvonne Arnaud, Milton H Saier, Jörg Stülke
Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis.
Microbiology (Reading): 1999, 145 ( Pt 12);3419-3429
[PubMed:10627040]
[WorldCat.org]
[DOI]
(P p)
J Stülke, W Hillen
Coupling physiology and gene regulation in bacteria: the phosphotransferase sugar uptake system delivers the signals.
Naturwissenschaften: 1998, 85(12);583-92
[PubMed:9871918]
[WorldCat.org]
[DOI]
(P p)
J Stülke, M Arnaud, G Rapoport, I Martin-Verstraete
PRD--a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria.
Mol Microbiol: 1998, 28(5);865-74
[PubMed:9663674]
[WorldCat.org]
[DOI]
(P p)